积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(32)C++(19)Rust(11)数据库(3)云计算&大数据(3)Kubernetes(2)前端开发(1)系统运维(1)Java(1)JavaScript(1)

语言

全部中文(简体)(34)英语(4)俄语(1)中文(简体)(1)

格式

全部PPT文档 PPT(40)
 
本次搜索耗时 0.016 秒,为您找到相关结果约 40 个.
  • 全部
  • 后端开发
  • C++
  • Rust
  • 数据库
  • 云计算&大数据
  • Kubernetes
  • 前端开发
  • 系统运维
  • Java
  • JavaScript
  • 全部
  • 中文(简体)
  • 英语
  • 俄语
  • 中文(简体)
  • 全部
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化

    深入浅出访存优化 by 彭于斌( @archibate ) 往期录播: https://www.bilibili.com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 为什么往 int 数组里赋值 1 比赋值 0 慢一倍? 第 1 章:内存带宽 cpu-bound 与 memory-bound • 而 sine 这种内部需要泰勒展开来计算,每次迭代计算量很大的 循环体,并行才有较好的加速效果。称为计算瓶颈( cpu- bound )。 • 并行能减轻计算瓶颈,但不减轻内存瓶颈,故后者是优化的重点 。 浮点加法的计算量 • 冷知识:并行地给浮点数组每个元素做一次加法反而更慢。 • 因为一次浮点加法的计算量和访存的超高延迟相比实在太少了。 • 计算太简单,数据量又大,并行只带来了多线程调度的额外开销 无法合并写入,会产生有中间数据读的带 宽。 写入 1 比写入 0 更慢? • 很简单,因为写入 0 被编译器自动优化成 了 memset ,而 memset 内部利用了 stream 指令得以更快写入。 写入 1 比写入 0 更慢?解决 • 解决办法就是,我们也用 stream 指令, 这样就可以和标准库优化过的 memset 一 样快了。 Intel Intrinsics Guide • _mm
    0 码力 | 147 页 | 18.88 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 性能优化之无分支编程 Branchless Programming

    性能优化 之 无分支编程 Branchless Programming by 彭于斌( @archibate ) 两种代码写法:分支 vs 三目运算符 两种使用方式:排序 vs 不排序 测试结果(均为 gcc -O3 ) 测试结果可视化 图表比较:分支 vs 无分支 分支 无分支 0 0.01 0.02 0.03 耗时(越低越好) 乱序 有序 • 传统的分支方法实现的 排序过的数据明显比乱序时高效。 • 无分支的方法对于乱序和有序的数据一样 高效,性能吊打了传统的分支方法。 • 对于传统分支的做法,为什么排序了的更 高效?既然无分支更高效,我要怎样优化 才能让我的程序变成无分支的呢?那就来 看本期性能优化专题课吧! 分支预测成败对性能的影响 排序为什么对有分支的版本影响那么大 为什么需要流水线 • 为了高效, CPU 的内部其实是一个流水 线 (pipeline) 节省时间。 • 例如洗脸需要眼睛嘴巴手,刷牙需要嘴巴手 ,那么洗脸和刷牙不能同时进行。但是烧开 水只需要占用煤气灶,和洗脸刷牙不冲突, 所以可以一边烧开水一边洗脸刷牙。 • 所以让小彭老师来优化的话,可以只需要 5 + 5 + 10 + 20 = 40 分钟,比你快一倍多。 任务 时间 占用资源 洗脸 5 分钟 眼睛,嘴巴,手 烧开水 10 分钟 煤气灶 刷牙 5 分钟 嘴巴,手
    0 码力 | 47 页 | 8.45 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 04 从汇编角度看编译器优化

    从汇编角度看编译器优化 by 彭于斌( @archibate ) 往期录播: https://www.bilibili.com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 1.课程安排与开发环境搭建: 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: *(rsp - 4) = edi; 开启优化: -O3 movl %edi, %eax 相当于: eax = edi 32 位乘法运算: imull imull %esi, %eax 相当于: eax *= esi 64 位乘法运算: imulq imulq %rsi, %rax 相当于: rax *= rsi 不过是 int64_t 的 整数加法:被优化成 leal 了 eax = rdi
    0 码力 | 108 页 | 9.47 MB | 1 年前
    3
  • ppt文档 KubeCon2020/大型Kubernetes集群的资源编排优化

    0 码力 | 27 页 | 3.91 MB | 1 年前
    3
  • ppt文档 夏歌-使用Rust构建LLM应用

    第三届中国 Rust 开发者大会 使用 Rust 构建 LLM 应用 夏歌 SECTION TITLE SECTION TITLE 我们能不能直接用 Rust • 训练 • 推理 • AI 应用相关的工具 • WASI-NN spec • WasmEdge 已经支持 Pytorch 、 TensorFlow Lite • WASI-NN 2.0 比如 Langchain Rewrite 开发太难了 Low code Rust Rust 在系统编程已经取得了巨大成功 培养更广泛的 Rust 开发 围绕 LLM 生态封装相应的 Rust 框 架,让开发者能够使用简单的 Rust 写 应用 如何用 Rust 实现的 构建和部署 AI 相关工作流的 serverless 平台 • 上传 Rust function ,平台负责将 Rust 编译成 Wasm ,并运行在 WasmEdge
    0 码力 | 36 页 | 38.31 MB | 1 年前
    3
  • ppt文档 绕过conntrack,使用eBPF增强 IPVS优化K8s网络性能

    0 码力 | 24 页 | 1.90 MB | 1 年前
    3
  • ppt文档 应用 waPC (rust) 做软件测试工具

    第三届中国 Rust 开发者大会 应用 waPC (rust) 做软件测试工具 Alan poon 潘泳权 大家好! @rustropy_gaming ruito_89 PhoTto / image / chart Webassembly Procedures Call waPC 协议标准化了本机代码调用 WebAssembly 和 WebAssembly 调用本机代码的通信 (messaging)
    0 码力 | 30 页 | 2.50 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 17 由浅入深学习 map 容器

    的遍历:不修改也建议加引用 k v (假如非常大的话) 执行你这段代码 的栈空间 & & ( 建立引用 ) map 中的 堆空间 • 何况 structural-binding 捕获的引用比刚刚图示的还要优化。他只会保存一个指向 pair 类 型的指针,然后在你使用 k 和 v 时再去按偏移量访问里面的 first 和 second ,所以 k , v 两个变量的 structural-binding O(n) 。 1 4 2 8 5 7 要找的数 内存 5 ==? 地址 a a+1 a+2 a+3 a+4 a+5 set 查找为什么高效 • set 又称集合(数学概念),是专为查找优化的容器,查找元素要用他自带的 find 函数。 • set a = { 1, 4, 2, 8, 5, 7 }; • a.find(5); • set 之所以能够实现 O(logn) 复杂度高效查找,是因为他内部预先构建好了一棵二叉排序树。 • 如何构建的?请看动画: 1 4 2 8 5 7 待插入的数 set 查找为什么高效 • set 又称集合(数学概念),是专为查找优化的容器,查找元素要用他自带的 find 函数。 • set a = { 1, 4, 2, 8, 5, 7 }; • a.find(5); • set 之所以能够实现 O(logn)
    0 码力 | 90 页 | 8.76 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 11 现代 CMake 进阶指南

    /opt/openvdb-8.0/lib/libopenvdb.so ) • cmake -B build -DCMAKE_BUILD_TYPE=Release • ↑ 设置构建模式为发布模式(开启全部优化) • cmake -B build ← 第二次配置时没有 -D 参数,但是之前的 -D 设置的变量都会被保留 • (此时缓存里仍有你之前定义的 CMAKE_BUILD_TYPE 和 CMAKE_INSTALL_PREFIX 也可以通过 pip install cmake 安装……) • 事实上, MSBuild 是单核心的构建系统, Makefile 虽然多核心但因历史兼容原因效率一 般。 • 而 Ninja 则是专为性能优化的构建系统,他和 CMake 结合都是行业标准了。 Ninja 和 Makefile 简单的对比 性能上: Ninja > Makefile > MSBuild Makefile 启动时会把每个文件都检测一遍, CMake 中一个特殊的变量,用于控制构建类型,他的值可以 是: • Debug 调试模式,完全不优化,生成调试信息,方便调试程序 • Release 发布模式,优化程度最高,性能最佳,但是编译比 Debug 慢 • MinSizeRel 最小体积发布,生成的文件比 Release 更小,不完全优化,减少二进制体积 • RelWithDebInfo 带调试信息发布,生成的文件比 Release
    0 码力 | 166 页 | 6.54 MB | 1 年前
    3
  • ppt文档 陈东 - 利用Rust重塑移动应用开发-230618

    第三届中国 Rust 开发者大会 利用 Rust 重塑移动应用开发 陈东 Aaron Chen CTO AccountLabs Rust China Conf 2023 2023 移动应用开发有那些选择? 1. Native 2. Flutter 3. React Native ? 利用 Rust 重塑移动应用开发 React Native is an open-source reload - Rendering Engine 利用 Rust 重塑移动应用开发 跨平台开发的优势和局限性 Pros: - Fast - Single Codebase - Third-party support (Javascript better than Dart) 利用 Rust 重塑移动应用开发 跨平台开发的优势和局 限性 Cons: - Performance Codebase 跨平台开发到到底 应该跨什么? UI or Logic ? 利用 Rust 重塑移动应用开发 Rust 在移动端应 用的价值 Rust is the only advanced choice for cross platform development. 利用 Rust 重塑移动应用开发 Rust 的特点 Why Rust? - Cross platform - Performance
    0 码力 | 22 页 | 2.10 MB | 1 年前
    3
共 40 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
C++高性性能高性能并行编程优化课件0704KubeCon2020大型Kubernetes集群资源编排夏歌使用Rust构建LLM应用绕过conntrackeBPF增强IPVSK8s网络潘泳权wpac1711陈东利用重塑移动开发230618
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩