积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(51)Python(51)Celery(51)

语言

全部英语(51)

格式

全部其他文档 其他(30)PDF文档 PDF(21)
 
本次搜索耗时 0.139 秒,为您找到相关结果约 51 个.
  • 全部
  • 后端开发
  • Python
  • Celery
  • 全部
  • 英语
  • 全部
  • 其他文档 其他
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • epub文档 Celery 2.1 Documentation

    the task until a worker server has consumed and executed it. Right now we have to check the worker log files to know what happened with the task. This is because we didn’t keep the AsyncResult object returned client, and not by a worker. logfile: The log file, can be passed on to get_logger() to gain access to the workers log file. See Logging. loglevel: The current log level used. delivery_info: Additional keys in this mapping. Logging You can use the workers logger to add diagnostic output to the worker log: class AddTask(Task): def run(self, x, y, **kwargs): logger = self.get_logger(**kwargs)
    0 码力 | 463 页 | 861.69 KB | 1 年前
    3
  • epub文档 Celery 2.2 Documentation

    the task until a worker server has consumed and executed it. Right now we have to check the worker log files to know what happened with the task. This is because we didn’t keep the AsyncResult object returned client, and not by a worker. logfile: The file the worker logs to. See Logging. loglevel: The current log level used. delivery_info: Additional message delivery information. This is a mapping containing add.request.kwargs)) Logging You can use the workers logger to add diagnostic output to the worker log: @task def add(x, y): logger = add.get_logger() logger.info("Adding %s + %s" % (x, y)) return
    0 码力 | 505 页 | 878.66 KB | 1 年前
    3
  • epub文档 Celery 2.3 Documentation

    the task until a worker server has consumed and executed it. Right now we have to check the worker log files to know what happened with the task. Applying a task returns an AsyncResult, if you have configured client, and not by a worker. logfile: The file the worker logs to. See Logging. loglevel: The current log level used. hostname: Hostname of the worker instance executing the task. delivery_info: Additional add.request.kwargs)) Logging You can use the workers logger to add diagnostic output to the worker log: @task def add(x, y): logger = add.get_logger() logger.info("Adding %s + %s" % (x, y)) return
    0 码力 | 530 页 | 900.64 KB | 1 年前
    3
  • epub文档 Celery 2.4 Documentation

    the task until a worker server has consumed and executed it. Right now we have to check the worker log files to know what happened with the task. Applying a task returns an AsyncResult, if you have configured client, and not by a worker. logfile: The file the worker logs to. See Logging. loglevel: The current log level used. hostname: Hostname of the worker instance executing the task. delivery_info: Additional add.request.kwargs)) Logging You can use the workers logger to add diagnostic output to the worker log: @task def add(x, y): logger = add.get_logger() logger.info("Adding %s + %s" % (x, y)) return
    0 码力 | 543 页 | 957.42 KB | 1 年前
    3
  • pdf文档 Celery 2.4 Documentation

    the task until a worker server has consumed and executed it. Right now we have to check the worker log files to know what happened with the task. Applying a task returns an AsyncResult, if you have configured client, and not by a worker. logfile The file the worker logs to. See Logging. loglevel The current log level used. hostname Hostname of the worker instance executing the task. delivery_info Additional request.kwargs)) 2.2.3 Logging You can use the workers logger to add diagnostic output to the worker log: 2.2. Tasks 23 Celery Documentation, Release 2.4.7 @task def add(x, y): logger = add.get_logger()
    0 码力 | 395 页 | 1.54 MB | 1 年前
    3
  • epub文档 Celery 3.1 Documentation

    same pidfile and logfile arguments must be used when stopping. By default it will create pid and log files in the current directory, to protect against multiple workers launching on top of each other /var/run/celery $ mkdir -p /var/log/celery $ celery multi start w1 -A proj -l info -- pidfile=/var/run/celery/%n.pid \ -- logfile=/var/log/celery/%n%I.log With the multi command CELERY_ENABLE_UTC setting). logfile: The file the worker logs to. See Logging. loglevel: The current log level used. hostname: Hostname of the worker instance executing the task. delivery_info: Additional
    0 码力 | 887 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Celery 3.1 Documentation

    same pidfile and logfile arguments must be used when stopping. By default it will create pid and log files in the current directory, to protect against multiple workers launching on top of each other mkdir -p /var/run/celery $ mkdir -p /var/log/celery $ celery multi start w1 -A proj -l info --pidfile=/var/run/celery/%n.pid \ --logfile=/var/log/celery/%n%I.log With the multi command you can start multiple CELERY_ENABLE_UTC setting). logfile The file the worker logs to. See Logging. loglevel The current log level used. hostname Hostname of the worker instance executing the task. delivery_info Additional
    0 码力 | 607 页 | 2.27 MB | 1 年前
    3
  • epub文档 Celery 2.5 Documentation

    the task until a worker server has consumed and executed it. Right now we have to check the worker log files to know what happened with the task. Applying a task returns an AsyncResult, if you have configured client, and not by a worker. logfile: The file the worker logs to. See Logging. loglevel: The current log level used. hostname: Hostname of the worker instance executing the task. delivery_info: Additional add.request.kwargs)) Logging You can use the workers logger to add diagnostic output to the worker log: @task def add(x, y): logger = add.get_logger() logger.info("Adding %s + %s" % (x, y)) return
    0 码力 | 647 页 | 1011.88 KB | 1 年前
    3
  • epub文档 Celery v4.0.1 Documentation

    the same pidfile and logfile arguments must be used when stopping. By default it’ll create pid and log files in the current directory, to protect against multiple workers launching on top of each other /var/run/celery $ mkdir -p /var/log/celery $ celery multi start w1 -A proj -l info -- pidfile=/var/run/celery/%n.pid \ -- logfile=/var/log/celery/%n%I.log With the multi command practice is to create a common logger for all of your tasks at the top of your module: from celery.utils.log import get_task_logger logger = get_task_logger(__name__) @app.task def add(x, y): logger.info('Adding
    0 码力 | 1040 页 | 1.37 MB | 1 年前
    3
  • epub文档 Celery v4.0.2 Documentation

    the same pidfile and logfile arguments must be used when stopping. By default it’ll create pid and log files in the current directory, to protect against multiple workers launching on top of each other /var/run/celery $ mkdir -p /var/log/celery $ celery multi start w1 -A proj -l info -- pidfile=/var/run/celery/%n.pid \ -- logfile=/var/log/celery/%n%I.log With the multi command practice is to create a common logger for all of your tasks at the top of your module: from celery.utils.log import get_task_logger logger = get_task_logger(__name__) @app.task def add(x, y): logger.info('Adding
    0 码力 | 1042 页 | 1.37 MB | 1 年前
    3
共 51 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
前往
页
相关搜索词
Celery2.1Documentation2.22.32.43.12.5v40.10.2
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩