pandas: powerful Python data analysis toolkit - 0.20.3Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3.1.5 Better support for compressed URLs in read_csv . . . . . . . . . . . . . . . . . 13 1.3.1.6 Pickle file I/O now now supports compression . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.1.7 UInt64 Support Improved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.1.8 GroupBy on Categoricals dtypes will not automatically upcast . . . . . . . . . . . . 27 1.3.2.8 Pandas Google BigQuery support has moved . . . . . . . . . . . . . . . . . . . . . 27 1.3.2.9 Memory Usage for Index is more Accurate0 码力 | 2045 页 | 9.18 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.20.2Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.1.5 Better support for compressed URLs in read_csv . . . . . . . . . . . . . . . . . 11 1.2.1.6 Pickle file I/O now now supports compression . . . . . . . . . . . . . . . . . . . . . . . 12 1.2.1.7 UInt64 Support Improved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.2.1.8 GroupBy on Categoricals dtypes will not automatically upcast . . . . . . . . . . . . 25 1.2.2.8 Pandas Google BigQuery support has moved . . . . . . . . . . . . . . . . . . . . . 26 1.2.2.9 Memory Usage for Index is more Accurate0 码力 | 1907 页 | 7.83 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.21.1Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 1.5.1.5 Better support for compressed URLs in read_csv . . . . . . . . . . . . . . . . . 42 1.5.1.6 Pickle file I/O now now supports compression . . . . . . . . . . . . . . . . . . . . . . . 42 1.5.1.7 UInt64 Support Improved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 1.5.1.8 GroupBy on Categoricals dtypes will not automatically upcast . . . . . . . . . . . . 56 1.5.2.8 Pandas Google BigQuery support has moved . . . . . . . . . . . . . . . . . . . . . 56 1.5.2.9 Memory Usage for Index is more Accurate0 码力 | 2207 页 | 8.59 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.19.1time-series aware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 read_csv has improved support for duplicate column names . . . . . . . . . . . . . . . . . 10 read_csv supports parsing Categorical . . . . . . . . . . . . . . . . . . . . . 103 Support for SAS XPORT files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Support for Math Functions in .eval() . . . . . . . . Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Display Alignment with Unicode East Asian Width . . . . . . . . . . . . . . . . . . . . . . . 106 Other enhancements . . . . .0 码力 | 1943 页 | 12.06 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.19.0time-series aware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 read_csv has improved support for duplicate column names . . . . . . . . . . . . . . . . . 9 read_csv supports parsing Categorical . . . . . . . . . . . . . . . . . . . . . 101 Support for SAS XPORT files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Support for Math Functions in .eval() . . . . . . . . Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Display Alignment with Unicode East Asian Width . . . . . . . . . . . . . . . . . . . . . . . 105 Other enhancements . . . . .0 码力 | 1937 页 | 12.03 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.0.0Version | Zipped HTML Useful links: Binary Installers | Source Repository | Issues & Ideas | Q&A Support | Mailing List pandas is an open source, BSD-licensed library providing high-performance, easy-to-use GH30936) 3 pandas: powerful Python data analysis toolkit, Release 1.0.0 1.2.2 Defining custom windows for rolling operations We’ve added a pandas.api.indexers.BaseIndexer() class that allows users to working with strings. See Text Data Types for more. 1.3.3 Boolean data type with missing values support We’ve added BooleanDtype / BooleanArray, an extension type dedicated to boolean data that can hold0 码力 | 3015 页 | 10.78 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.1.1. . . . . . . 679 2.15.4 Expanding windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683 2.15.5 Exponentially weighted windows . . . . . . . . . . . . . . . . . . formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833 2.20.7 Unicode formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834 2.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2478 4.7.2 Python support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2479 4.8 Roadmap0 码力 | 3231 页 | 10.87 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.1.0. . . . . . . 679 2.15.4 Expanding windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683 2.15.5 Exponentially weighted windows . . . . . . . . . . . . . . . . . . formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833 2.20.7 Unicode formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834 2.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2478 4.7.2 Python support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2479 4.8 Roadmap0 码力 | 3229 页 | 10.87 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.25.0Version | Zipped HTML Useful links: Binary Installers | Source Repository | Issues & Ideas | Q&A Support | Mailing List pandas is an open source, BSD-licensed library providing high-performance, easy-to-use single threshold, set pd.options.display.min_rows = None. 1.1.5 Json normalize with max_level param support json_normalize() normalizes the provided input dict to all nested levels. The new max_level parameter keywords logy, logx and loglog can now accept the value 'sym' for symlog scaling. (GH24867) • Added support for ISO week year format (‘%G-%V-%u’) when parsing datetimes using to_datetime() (GH16607) • Indexing0 码力 | 2827 页 | 9.62 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.25.1Version | Zipped HTML Useful links: Binary Installers | Source Repository | Issues & Ideas | Q&A Support | Mailing List pandas is an open source, BSD-licensed library providing high-performance, easy-to-use single threshold, set pd.options.display.min_rows = None. 1.1.5 Json normalize with max_level param support json_normalize() normalizes the provided input dict to all nested levels. The new max_level parameter keywords logy, logx and loglog can now accept the value 'sym' for symlog scaling. (GH24867) • Added support for ISO week year format (‘%G-%V-%u’) when parsing datetimes using to_datetime() (GH16607) • Indexing0 码力 | 2833 页 | 9.65 MB | 1 年前3
共 32 条
- 1
- 2
- 3
- 4













