pandas: powerful Python data analysis toolkit - 0.25openpyxl 2.4.8 Reading / writing for xlsx files pandas-gbq 0.8.0 Google Big Query access psycopg2 PostgreSQL engine for sqlalchemy pyarrow 0.9.0 Parquet and feather reading / writing pymysql 0.7.11 MySQL the following drawbacks: 1. When your Series contains an extension type, its unclear whether Series.values returns a NumPy array or the extension array. Series.array will always return an ExtensionArray internally. See Extension types for how to write your own extension that works with pandas. See Extension data types for a list of third-party libraries that have implemented an extension. The following0 码力 | 698 页 | 4.91 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.0.0the user guide on missing data. 1.3.2 Dedicated string data type We’ve added StringDtype, an extension type dedicated to string data. Previously, strings were typically stored in object-dtype NumPy arrays experimental. The implementation and parts of the API may change without warning. The 'string' extension type solves several issues with object-dtype NumPy arrays: 1. You can accidentally store a mixture 3.3 Boolean data type with missing values support We’ve added BooleanDtype / BooleanArray, an extension type dedicated to boolean data that can hold missing values. The default bool data type based on0 码力 | 3015 页 | 10.78 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.1.1. . . . . . . . . . . . . . . . . . . . . . . . . . 2396 3.16.1 pandas.api.extensions.register_extension_dtype . . . . . . . . . . . . . . . . . . . . . . . . 2396 3.16.2 pandas.api.extensions.regist custom accessors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2468 4.5.2 Extension types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2469 4 openpyxl 2.5.7 Reading / writing for xlsx files pandas-gbq 0.12.0 Google Big Query access psycopg2 PostgreSQL engine for sqlalchemy pyarrow 0.12.0 Parquet, ORC (requires 0.13.0), and feather reading / writing0 码力 | 3231 页 | 10.87 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.1.0. . . . . . . . . . . . . . . . . . . . . . . . . . 2396 3.16.1 pandas.api.extensions.register_extension_dtype . . . . . . . . . . . . . . . . . . . . . . . . 2396 3.16.2 pandas.api.extensions.regist custom accessors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2468 4.5.2 Extension types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2469 4 openpyxl 2.5.7 Reading / writing for xlsx files pandas-gbq 0.12.0 Google Big Query access psycopg2 PostgreSQL engine for sqlalchemy pyarrow 0.12.0 Parquet, ORC (requires 0.13.0), and feather reading / writing0 码力 | 3229 页 | 10.87 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.0. . . . . . . . . . . . . . . . . . . . . . . . . . 2302 3.16.1 pandas.api.extensions.register_extension_dtype . . . . . . . . . . . . . . . . . . . . . . . . 2303 3.16.2 pandas.api.extensions.regist custom accessors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2374 4.5.2 Extension types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2375 4 openpyxl 2.5.7 Reading / writing for xlsx files pandas-gbq 0.8.0 Google Big Query access psycopg2 PostgreSQL engine for sqlalchemy pyarrow 0.12.0 Parquet, ORC (requires 0.13.0), and feather reading / writing0 码力 | 3091 页 | 10.16 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.0.4. . . . . . . . . . . . . . . . . . . . . . . . . . 2299 3.16.1 pandas.api.extensions.register_extension_dtype . . . . . . . . . . . . . . . . . . . . . . . . 2300 3.16.2 pandas.api.extensions.regist custom accessors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2370 4.5.2 Extension types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2371 4 openpyxl 2.5.7 Reading / writing for xlsx files pandas-gbq 0.8.0 Google Big Query access psycopg2 PostgreSQL engine for sqlalchemy pyarrow 0.12.0 Parquet, ORC (requires 0.13.0), and feather reading / writing0 码力 | 3081 页 | 10.24 MB | 1 年前3
pandas: powerful Python data analysis toolkit -1.0.3. . . . . . . . . . . . . . . . . . . . . . . . . . 2288 4.16.1 pandas.api.extensions.register_extension_dtype . . . . . . . . . . . . . . . . . . . . . . . . 2289 4.16.2 pandas.api.extensions.regist custom accessors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2360 5.5.2 Extension types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2361 5 Bug in dtypes being lost in DataFrame.__invert__ (~ operator) with mixed dtypes (GH31183) and for extension-array backed Series and DataFrame (GH23087) Plotting • Plotting tz-aware timeseries no longer0 码力 | 3071 页 | 10.10 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.25.1operators, for example: x < -0.1 (GH25928) • Fixed bug where casting all-boolean array to integer extension array failed (GH25211) • Bug in divmod with a Series object containing zeros incorrectly raising (GH26835) • Added Series.__array_ufunc__ to better handle NumPy ufuncs applied to Series backed by extension arrays (GH23293). • Keyword argument deep has been removed from ExtensionArray.copy() (GH27083) openpyxl 2.4.8 Reading / writing for xlsx files pandas-gbq 0.8.0 Google Big Query access psycopg2 PostgreSQL engine for sqlalchemy pyarrow 0.9.0 Parquet and feather reading / writing pymysql 0.7.11 MySQL0 码力 | 2833 页 | 9.65 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.25.0operators, for example: x < -0.1 (GH25928) • Fixed bug where casting all-boolean array to integer extension array failed (GH25211) • Bug in divmod with a Series object containing zeros incorrectly raising (GH26835) • Added Series.__array_ufunc__ to better handle NumPy ufuncs applied to Series backed by extension arrays (GH23293). • Keyword argument deep has been removed from ExtensionArray.copy() (GH27083) openpyxl 2.4.8 Reading / writing for xlsx files pandas-gbq 0.8.0 Google Big Query access psycopg2 PostgreSQL engine for sqlalchemy pyarrow 0.9.0 Parquet and feather reading / writing pymysql 0.7.11 MySQL0 码力 | 2827 页 | 9.62 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.3.3. . . . . . . . . . . . . . . . . . . . . . . . . . 2668 3.15.1 pandas.api.extensions.register_extension_dtype . . . . . . . . . . . . . . . . . . . . . . . . 2668 3.15.2 pandas.api.extensions.regist custom accessors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2745 4.10.2 Extension types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2746 4 Minimum Version Notes SQLAlchemy 1.3.0 SQL support for databases other than sqlite psycopg2 2.7 PostgreSQL engine for sqlalchemy pymysql 0.8.1 MySQL engine for sqlalchemy Other data sources Dependency0 码力 | 3603 页 | 14.65 MB | 1 年前3
共 32 条
- 1
- 2
- 3
- 4













