pandas: powerful Python data analysis toolkit - 1.0.44 (continued from previous page) In [18]: stations_coord.head() Out[18]: location coordinates.latitude coordinates.longitude 0 BELAL01 51.23619 4.38522 1 BELHB23 51.17030 4.34100 2 BELLD01 51.10998 ....: In [21]: air_quality.head() Out[21]: date.utc location parameter value coordinates. ˓→latitude coordinates.longitude 0 2019-05-07 01:00:00+00:00 London Westminster no2 23.0 51. ˓→49467 -0.13193 ....: In [25]: air_quality.head() Out[25]: date.utc location parameter value coordinates. ˓→latitude coordinates.longitude id ˓→description name 0 2019-05-07 01:00:00+00:00 London Westminster no20 码力 | 3081 页 | 10.24 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.1.00 (continued from previous page) In [18]: stations_coord.head() Out[18]: location coordinates.latitude coordinates.longitude 0 BELAL01 51.23619 4.38522 1 BELHB23 51.17030 4.34100 2 BELLD01 51.10998 ....: In [21]: air_quality.head() Out[21]: date.utc location parameter value coordinates. ˓→latitude coordinates.longitude 0 2019-05-07 01:00:00+00:00 London Westminster no2 23.0 51. ˓→49467 -0.13193 ....: In [25]: air_quality.head() Out[25]: date.utc location parameter value coordinates. ˓→latitude coordinates.longitude id ˓→description name 0 2019-05-07 01:00:00+00:00 London Westminster no20 码力 | 3229 页 | 10.87 MB | 1 年前3
pandas: powerful Python data analysis toolkit -1.0.33 (continued from previous page) In [18]: stations_coord.head() Out[18]: location coordinates.latitude coordinates.longitude 0 BELAL01 51.23619 4.38522 1 BELHB23 51.17030 4.34100 2 BELLD01 51.10998 ....: In [21]: air_quality.head() Out[21]: date.utc location parameter value coordinates. ˓→latitude coordinates.longitude 0 2019-05-07 01:00:00+00:00 London Westminster no2 23.0 51. ˓→49467 -0.13193 ....: In [25]: air_quality.head() Out[25]: date.utc location parameter value coordinates. ˓→latitude coordinates.longitude id ˓→description name 0 2019-05-07 01:00:00+00:00 London Westminster no20 码力 | 3071 页 | 10.10 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.05 (continued from previous page) In [18]: stations_coord.head() Out[18]: location coordinates.latitude coordinates.longitude 0 BELAL01 51.23619 4.38522 1 BELHB23 51.17030 4.34100 2 BELLD01 51.10998 ....: In [21]: air_quality.head() Out[21]: date.utc location parameter value coordinates. ˓→latitude coordinates.longitude 0 2019-05-07 01:00:00+00:00 London Westminster no2 23.0 51. ˓→49467 -0.13193 correlations between two variables. Points could be for instance natural 2D coordinates like longitude and latitude in a map or, in general, any pair of metrics that can be plotted against each other. Parameters0 码力 | 3091 页 | 10.16 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.1.11 (continued from previous page) In [18]: stations_coord.head() Out[18]: location coordinates.latitude coordinates.longitude 0 BELAL01 51.23619 4.38522 1 BELHB23 51.17030 4.34100 2 BELLD01 51.10998 ....: In [21]: air_quality.head() Out[21]: date.utc location parameter value coordinates. ˓→latitude coordinates.longitude 0 2019-05-07 01:00:00+00:00 London Westminster no2 23.0 51. ˓→49467 -0.13193 correlations between two variables. Points could be for instance natural 2D coordinates like longitude and latitude in a map or, in general, any pair of metrics that can be plotted against each other. Parameters0 码力 | 3231 页 | 10.87 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.0.0correlations between two variables. Points could be for instance natural 2D coordinates like longitude and latitude in a map or, in general, any pair of metrics that can be plotted against each other. Parameters @property def center(self): # return the geographic center point of this DataFrame lat = self._obj.latitude lon = self._obj.longitude return (float(lon.mean()), float(lat.mean())) def plot(self): # plot in an interactive IPython session: >>> ds = pd.DataFrame({'longitude': np.linspace(0, 10), ... 'latitude': np.linspace(0, 20)}) >>> ds.geo.center (5.0, 10.0) >>> ds.geo.plot() # plots data on a map 40 码力 | 3015 页 | 10.78 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.25.0correlations between two variables. Points could be for instance natural 2D coordinates like longitude and latitude in a map or, in general, any pair of metrics that can be plotted against each other. Parameters page) def center(self): # return the geographic center point of this DataFrame lat = self._obj.latitude lon = self._obj.longitude return (float(lon.mean()), float(lat.mean())) def plot(self): # plot in an interactive IPython session: >>> ds = pd.DataFrame({'longitude': np.linspace(0, 10), ... 'latitude': np.linspace(0, 20)}) >>> ds.geo.center (5.0, 10.0) >>> ds.geo.plot() # plots data on a map 60 码力 | 2827 页 | 9.62 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.25.1correlations between two variables. Points could be for instance natural 2D coordinates like longitude and latitude in a map or, in general, any pair of metrics that can be plotted against each other. Parameters page) def center(self): # return the geographic center point of this DataFrame lat = self._obj.latitude lon = self._obj.longitude return (float(lon.mean()), float(lat.mean())) def plot(self): # plot in an interactive IPython session: >>> ds = pd.DataFrame({'longitude': np.linspace(0, 10), ... 'latitude': np.linspace(0, 20)}) >>> ds.geo.center (5.0, 10.0) >>> ds.geo.plot() # plots data on a map 60 码力 | 2833 页 | 9.65 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.2.3read_csv("data/air_quality_stations.csv") In [18]: stations_coord.head() Out[18]: location coordinates.latitude coordinates.longitude 0 BELAL01 51.23619 4.38522 1 BELHB23 51.17030 4.34100 2 BELLD01 51.10998 on="location ˓→") In [21]: air_quality.head() Out[21]: date.utc location parameter value coordinates. ˓→latitude coordinates.longitude 0 2019-05-07 01:00:00+00:00 London Westminster no2 23.0 51. ˓→49467 -0.13193 correlations between two variables. Points could be for instance natural 2D coordinates like longitude and latitude in a map or, in general, any pair of metrics that can be plotted against each other. Parameters0 码力 | 3323 页 | 12.74 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.3.2read_csv("data/air_quality_stations.csv") In [18]: stations_coord.head() Out[18]: location coordinates.latitude coordinates.longitude 0 BELAL01 51.23619 4.38522 1 BELHB23 51.17030 4.34100 2 BELLD01 51.10998 on="location ˓→") In [21]: air_quality.head() Out[21]: date.utc location parameter value coordinates. ˓→latitude coordinates.longitude 0 2019-05-07 01:00:00+00:00 London Westminster no2 23.0 51. ˓→49467 -0.13193 correlations between two variables. Points could be for instance natural 2D coordinates like longitude and latitude in a map or, in general, any pair of metrics that can be plotted against each other. Parameters0 码力 | 3509 页 | 14.01 MB | 1 年前3
共 17 条
- 1
- 2













