pandas: powerful Python data analysis toolkit - 0.25analysis toolkit, Release 0.25.3 4.1.1 CSV & text files The workhorse function for reading text files (a.k.a. flat files) is read_csv(). See the cookbook for some advanced strategies. Parsing options read_csv() bar Name: string, dtype: object Selecting coordinates Sometimes you want to get the coordinates (a.k.a the index locations) of your query. This returns an Int64Index of the resulting locations. These coordinates = csv.writer(s_buf) writer.writerows(data_iter) s_buf.seek(0) columns = ', '.join('"{}"'.format(k) for k in keys) if table.schema: table_name = '{}.{}'.format(table.schema, table.name) else: table_name0 码力 | 698 页 | 4.91 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.0.0+ • Paul Lee + • Paul Siegel + • Petr Baev + • Pietro Battiston • Prakhar Pandey + • Puneeth K + • Raghav + • Rajat + • Rajhans Jadhao + • Rajiv Bharadwaj + • Roei.r • Rohit Sanjay + • Ronan analysis toolkit, Release 1.0.0 3.1.1 CSV & text files The workhorse function for reading text files (a.k.a. flat files) is read_csv(). See the cookbook for some advanced strategies. Parsing options read_csv() bar Name: string, dtype: object Selecting coordinates Sometimes you want to get the coordinates (a.k.a the index locations) of your query. This returns an Int64Index of the resulting locations. These coordinates0 码力 | 3015 页 | 10.78 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.25.0analysis toolkit, Release 0.25.0 4.1.1 CSV & text files The workhorse function for reading text files (a.k.a. flat files) is read_csv(). See the cookbook for some advanced strategies. Parsing options read_csv() bar Name: string, dtype: object Selecting coordinates Sometimes you want to get the coordinates (a.k.a the index locations) of your query. This returns an Int64Index of the resulting locations. These coordinates = csv.writer(s_buf) writer.writerows(data_iter) s_buf.seek(0) columns = ', '.join('"{}"'.format(k) for k in keys) if table.schema: table_name = '{}.{}'.format(table.schema, table.name) else: table_name0 码力 | 2827 页 | 9.62 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.25.1analysis toolkit, Release 0.25.1 4.1.1 CSV & text files The workhorse function for reading text files (a.k.a. flat files) is read_csv(). See the cookbook for some advanced strategies. Parsing options read_csv() bar Name: string, dtype: object Selecting coordinates Sometimes you want to get the coordinates (a.k.a the index locations) of your query. This returns an Int64Index of the resulting locations. These coordinates = csv.writer(s_buf) writer.writerows(data_iter) s_buf.seek(0) columns = ', '.join('"{}"'.format(k) for k in keys) if table.schema: table_name = '{}.{}'.format(table.schema, table.name) else: table_name0 码力 | 2833 页 | 9.65 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.20.3(GH11881, GH12572). For further details see here • HDFStore is now iterable: for k in store is equivalent to for k in store.keys() (GH12221). • Add missing methods/fields to .dt for Period (GH8848) = pd.MultiIndex.from_product([['j'], ['l', 'k']], ....: names = ['i1', 'i2'])) ....: In [32]: df Out[32]: col1 foo bar col2 a b a b i1 i2 j l 1 2 3 4 k 5 6 7 8 In [33]: df.to_excel('test.xlsx') (October 9, 2015) 151 pandas: powerful Python data analysis toolkit, Release 0.20.3 i1 i2 j l 1 2 3 4 k 5 6 7 8 Previously, it was necessary to specify the has_index_names argument in read_excel, if the0 码力 | 2045 页 | 9.18 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.20.2(GH11881, GH12572). For further details see here • HDFStore is now iterable: for k in store is equivalent to for k in store.keys() (GH12221). • Add missing methods/fields to .dt for Period (GH8848) = pd.MultiIndex.from_product([['j'], ['l', 'k']], ....: names = ['i1', 'i2'])) ....: In [32]: df Out[32]: col1 foo bar col2 a b a b i1 i2 j l 1 2 3 4 k 5 6 7 8 In [33]: df.to_excel('test.xlsx') header=[0,1], index_col=[0,1]) In [35]: df Out[35]: col1 foo bar col2 a b a b i1 i2 j l 1 2 3 4 k 5 6 7 8 Previously, it was necessary to specify the has_index_names argument in read_excel, if the0 码力 | 1907 页 | 7.83 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.21.1(GH11881, GH12572). For further details see here • HDFStore is now iterable: for k in store is equivalent to for k in store.keys() (GH12221). • Add missing methods/fields to .dt for Period (GH8848) = pd.MultiIndex.from_product([['j'], ['l', 'k']], ....: names = ['i1', 'i2'])) ....: In [32]: df Out[32]: col1 foo bar col2 a b a b i1 i2 j l 1 2 3 4 k 5 6 7 8 In [33]: df.to_excel('test.xlsx') Chapter 1. What’s New pandas: powerful Python data analysis toolkit, Release 0.21.1 i1 i2 j l 1 2 3 4 k 5 6 7 8 Previously, it was necessary to specify the has_index_names argument in read_excel, if the0 码力 | 2207 页 | 8.59 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.19.0(GH11881, GH12572). For further details see here • HDFStore is now iterable: for k in store is equivalent to for k in store.keys() (GH12221). • Add missing methods/fields to .dt for Period (GH8848) = pd.MultiIndex.from_product([['j'], ['l', 'k']], ....: names = ['i1', 'i2'])) ....: In [32]: df Out[32]: col1 foo bar col2 a b a b i1 i2 j l 1 2 3 4 k 5 6 7 8 In [33]: df.to_excel('test.xlsx') header=[0,1], index_col=[0,1]) In [35]: df Out[35]: col1 foo bar col2 a b a b i1 i2 j l 1 2 3 4 k 5 6 7 8 Previously, it was necessary to specify the has_index_names argument in read_excel, if the0 码力 | 1937 页 | 12.03 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.19.1(GH11881, GH12572). For further details see here • HDFStore is now iterable: for k in store is equivalent to for k in store.keys() (GH12221). • Add missing methods/fields to .dt for Period (GH8848) = pd.MultiIndex.from_product([['j'], ['l', 'k']], ....: names = ['i1', 'i2'])) ....: In [32]: df Out[32]: col1 foo bar col2 a b a b i1 i2 j l 1 2 3 4 k 5 6 7 8 In [33]: df.to_excel('test.xlsx') header=[0,1], index_col=[0,1]) In [35]: df Out[35]: col1 foo bar col2 a b a b i1 i2 j l 1 2 3 4 k 5 6 7 8 Previously, it was necessary to specify the has_index_names argument in read_excel, if the0 码力 | 1943 页 | 12.06 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.0analysis toolkit, Release 1.0.5 2.1.1 CSV & text files The workhorse function for reading text files (a.k.a. flat files) is read_csv(). See the cookbook for some advanced strategies. Parsing options read_csv() bar Name: string, dtype: object Selecting coordinates Sometimes you want to get the coordinates (a.k.a the index locations) of your query. This returns an Int64Index of the resulting locations. These coordinates = csv.writer(s_buf) writer.writerows(data_iter) s_buf.seek(0) columns = ', '.join('"{}"'.format(k) for k in keys) if table.schema: table_name = '{}.{}'.format(table.schema, table.name) else: table_name0 码力 | 3091 页 | 10.16 MB | 1 年前3
共 32 条
- 1
- 2
- 3
- 4













