pandas: powerful Python data analysis toolkit - 1.0.0>>> d2 = {'name': ['Alice', 'Bob'], ... 'score': [9.5, 8], ... 'employed': [False, True], ... 'kids': [0, 0]} >>> df2 = pd.DataFrame(data=d2) >>> df2 name score employed kids 0 Alice 9.5 False 0 1 Bob True 0 >>> df2_transposed = df2.T # or df2.transpose() >>> df2_transposed 0 1 name Alice Bob score 9.5 8 employed False True kids 0 0 When the DataFrame has mixed dtypes, we get a transposed DataFrame reference pandas: powerful Python data analysis toolkit, Release 1.0.0 >>> df2.dtypes name object score float64 employed bool kids int64 dtype: object >>> df2_transposed.dtypes 0 object 1 object dtype:0 码力 | 3015 页 | 10.78 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.25.0>>> d2 = {'name': ['Alice', 'Bob'], ... 'score': [9.5, 8], ... 'employed': [False, True], ... 'kids': [0, 0]} >>> df2 = pd.DataFrame(data=d2) >>> df2 name score employed kids 0 Alice 9.5 False 0 1 Bob name Alice Bob score 9.5 8 employed False True kids 0 0 When the DataFrame has mixed dtypes, we get a transposed DataFrame with the object dtype: >>> df2.dtypes name object score float64 employed >>> d2 = {'name': ['Alice', 'Bob'], ... 'score': [9.5, 8], ... 'employed': [False, True], ... 'kids': [0, 0]} >>> df2 = pd.DataFrame(data=d2) >>> df2 name score employed kids 0 Alice 9.5 False 0 1 Bob0 码力 | 2827 页 | 9.62 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.25.1>>> d2 = {'name': ['Alice', 'Bob'], ... 'score': [9.5, 8], ... 'employed': [False, True], ... 'kids': [0, 0]} >>> df2 = pd.DataFrame(data=d2) >>> df2 name score employed kids 0 Alice 9.5 False 0 1 Bob name Alice Bob score 9.5 8 employed False True kids 0 0 When the DataFrame has mixed dtypes, we get a transposed DataFrame with the object dtype: >>> df2.dtypes name object score float64 employed >>> d2 = {'name': ['Alice', 'Bob'], ... 'score': [9.5, 8], ... 'employed': [False, True], ... 'kids': [0, 0]} >>> df2 = pd.DataFrame(data=d2) >>> df2 name score employed kids 0 Alice 9.5 False 0 1 Bob0 码力 | 2833 页 | 9.65 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.0>>> d2 = {'name': ['Alice', 'Bob'], ... 'score': [9.5, 8], ... 'employed': [False, True], ... 'kids': [0, 0]} >>> df2 = pd.DataFrame(data=d2) >>> df2 name score employed kids 0 Alice 9.5 False 0 1 Bob True 0 >>> df2_transposed = df2.T # or df2.transpose() >>> df2_transposed 0 1 name Alice Bob score 9.5 8 employed False True kids 0 0 When the DataFrame has mixed dtypes, we get a transposed DataFrame reference pandas: powerful Python data analysis toolkit, Release 1.0.5 >>> df2.dtypes name object score float64 employed bool kids int64 dtype: object >>> df2_transposed.dtypes 0 object 1 object dtype:0 码力 | 3091 页 | 10.16 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.0.4>>> d2 = {'name': ['Alice', 'Bob'], ... 'score': [9.5, 8], ... 'employed': [False, True], ... 'kids': [0, 0]} >>> df2 = pd.DataFrame(data=d2) >>> df2 name score employed kids 0 Alice 9.5 False 0 1 Bob True 0 >>> df2_transposed = df2.T # or df2.transpose() >>> df2_transposed 0 1 name Alice Bob score 9.5 8 employed False True kids 0 0 When the DataFrame has mixed dtypes, we get a transposed DataFrame DataFrame 1365 pandas: powerful Python data analysis toolkit, Release 1.0.4 >>> df2.dtypes name object score float64 employed bool kids int64 dtype: object >>> df2_transposed.dtypes 0 object 1 object dtype:0 码力 | 3081 页 | 10.24 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.24.0>>> d2 = {'name': ['Alice', 'Bob'], ... 'score': [9.5, 8], ... 'employed': [False, True], ... 'kids': [0, 0]} >>> df2 = pd.DataFrame(data=d2) >>> df2 name score employed kids 0 Alice 9.5 False 0 1 Bob name Alice Bob score 9.5 8 employed False True kids 0 0 When the DataFrame has mixed dtypes, we get a transposed DataFrame with the object dtype: >>> df2.dtypes name object score float64 employed >>> d2 = {'name': ['Alice', 'Bob'], ... 'score': [9.5, 8], ... 'employed': [False, True], ... 'kids': [0, 0]} >>> df2 = pd.DataFrame(data=d2) >>> df2 name score employed kids 0 Alice 9.5 False 0 1 Bob0 码力 | 2973 页 | 9.90 MB | 1 年前3
pandas: powerful Python data analysis toolkit -1.0.3>>> d2 = {'name': ['Alice', 'Bob'], ... 'score': [9.5, 8], ... 'employed': [False, True], ... 'kids': [0, 0]} >>> df2 = pd.DataFrame(data=d2) >>> df2 name score employed kids 0 Alice 9.5 False 0 1 Bob True 0 >>> df2_transposed = df2.T # or df2.transpose() >>> df2_transposed 0 1 name Alice Bob score 9.5 8 employed False True kids 0 0 When the DataFrame has mixed dtypes, we get a transposed DataFrame DataFrame 1367 pandas: powerful Python data analysis toolkit, Release 1.0.3 >>> df2.dtypes name object score float64 employed bool kids int64 dtype: object >>> df2_transposed.dtypes 0 object 1 object dtype:0 码力 | 3071 页 | 10.10 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.3.2specificity here but for our purposes it suffices to summarize the key points: A CSS importance score for each HTML element is derived by starting at zero and adding: • 1000 for an inline style attribute >>> d2 = {'name': ['Alice', 'Bob'], ... 'score': [9.5, 8], ... 'employed': [False, True], ... 'kids': [0, 0]} >>> df2 = pd.DataFrame(data=d2) >>> df2 name score employed kids 0 Alice 9.5 False 0 1 Bob name Alice Bob score 9.5 8.0 employed False True kids 0 0 When the DataFrame has mixed dtypes, we get a transposed DataFrame with the object dtype: >>> df2.dtypes name object score float64 employed0 码力 | 3509 页 | 14.01 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.3.3specificity here but for our purposes it suffices to summarize the key points: A CSS importance score for each HTML element is derived by starting at zero and adding: • 1000 for an inline style attribute >>> d2 = {'name': ['Alice', 'Bob'], ... 'score': [9.5, 8], ... 'employed': [False, True], ... 'kids': [0, 0]} >>> df2 = pd.DataFrame(data=d2) >>> df2 name score employed kids 0 Alice 9.5 False 0 1 Bob name Alice Bob score 9.5 8.0 employed False True kids 0 0 When the DataFrame has mixed dtypes, we get a transposed DataFrame with the object dtype: >>> df2.dtypes name object score float64 employed0 码力 | 3603 页 | 14.65 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.3.4specificity here but for our purposes it suffices to summarize the key points: A CSS importance score for each HTML element is derived by starting at zero and adding: • 1000 for an inline style attribute >>> d2 = {'name': ['Alice', 'Bob'], ... 'score': [9.5, 8], ... 'employed': [False, True], ... 'kids': [0, 0]} >>> df2 = pd.DataFrame(data=d2) >>> df2 name score employed kids 0 Alice 9.5 False 0 1 Bob name Alice Bob score 9.5 8.0 employed False True kids 0 0 When the DataFrame has mixed dtypes, we get a transposed DataFrame with the object dtype: >>> df2.dtypes name object score float64 employed0 码力 | 3605 页 | 14.68 MB | 1 年前3
共 27 条
- 1
- 2
- 3













