积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(32)Pandas(32)

语言

全部英语(32)

格式

全部PDF文档 PDF(32)
 
本次搜索耗时 0.588 秒,为您找到相关结果约 32 个.
  • 全部
  • 云计算&大数据
  • Pandas
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.25.1

    ============================================================================== Dep. Variable: hr R-squared: 0.685 Model: OLS Adj. R-squared: 0.665 Method: Least Squares F-statistic: 34.28 Date: Thu, 22 Aug 2019 Prob 16:13:35 Log-Likelihood: -205.92 No. Observations: 68 AIC: 421.8 Df Residuals: 63 BIC: 432.9 Df Model: 4 Covariance Type: nonrobust =============================================================================== DataFrame is not intended to be a drop-in replacement for ndarray as its indexing semantics and data model are quite different in places from an n-dimensional array. Series implements __array_ufunc__, which
    0 码力 | 2833 页 | 9.65 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.13.1

    in the documentation. Our Copyright Policy ==================== PyData uses a shared copyright model. Each contributor maintains copyright over their contributions to PyData. However, it is important ===================================================== Dep. Variable: cellphone R-squared: 0.297 Model: OLS Adj. R-squared: 0.274 Method: Least Squares F-statistic: 13.08 Date: Thu, 25 Jul 2013 Prob 15:24:42 Log-Likelihood: -139.16 No. Observations: 33 AIC: 282.3 Df Residuals: 31 BIC: 285.3 Df Model: 1 =============================================================================== coef std err
    0 码力 | 1219 页 | 4.81 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.17.0

    ================================ Dep. Variable: hr No. Observations: 68 Model: Poisson Df Residuals: 63 Method: MLE Df Model: 4 Date: Fri, 09 Oct 2015 Pseudo R-squ.: 0.6878 Time: 20:59:49 Log-Likelihood: 247 pandas: powerful Python data analysis toolkit, Release 0.17.0 PyData uses a shared copyright model. Each contributor maintains copyright over their contributions to PyData. However, it is important Functionality pandas: powerful Python data analysis toolkit, Release 0.17.0 Model: Poisson Df Residuals: 63 Method: MLE Df Model: 4 Date: Fri, 09 Oct 2015 Pseudo R-squ.: 0.6878 Time: 20:16:35 Log-Likelihood:
    0 码力 | 1787 页 | 10.76 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.25.0

    ============================================================================== Dep. Variable: hr R-squared: 0.685 Model: OLS Adj. R-squared: 0.665 Method: Least Squares F-statistic: 34.28 Date: Thu, 18 Jul 2019 Prob 17:56:24 Log-Likelihood: -205.92 No. Observations: 68 AIC: 421.8 Df Residuals: 63 BIC: 432.9 Df Model: 4 Covariance Type: nonrobust =============================================================================== DataFrame is not intended to be a drop-in replacement for ndarray as its indexing semantics and data model are quite different in places from an n-dimensional array. Series implements __array_ufunc__, which
    0 码力 | 2827 页 | 9.62 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.14.0

    in the documentation. Our Copyright Policy ==================== PyData uses a shared copyright model. Each contributor maintains copyright over their contributions to PyData. However, it is important ===================================================== Dep. Variable: cellphone R-squared: 0.297 Model: OLS Adj. R-squared: 0.274 Method: Least Squares F-statistic: 13.08 Date: Thu, 25 Jul 2013 Prob 15:24:42 Log-Likelihood: -139.16 No. Observations: 33 AIC: 282.3 Df Residuals: 31 BIC: 285.3 Df Model: 1 =============================================================================== coef std err
    0 码力 | 1349 页 | 7.67 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.24.0

    ============================================================================== Dep. Variable: hr R-squared: 0.685 Model: OLS Adj. R-squared: 0.665 Method: Least Squares F-statistic: 34.28 Date: Fri, 25 Jan 2019 Prob 16:28:07 Log-Likelihood: -205.92 No. Observations: 68 AIC: 421.8 Df Residuals: 63 BIC: 432.9 Df Model: 4 Covariance Type: nonrobust =============================================================================== pandas itself only supports IO with a limited set of file formats that map cleanly to its tabular data model. For reading and writing other file formats into and from pandas, we recommend these packages from
    0 码力 | 2973 页 | 9.90 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.19.0

    ================================ Dep. Variable: hr No. Observations: 68 Model: Poisson Df Residuals: 63 Method: MLE Df Model: 4 Date: Son, 02 Okt 2016 Pseudo R-squ.: 0.6878 Time: 17:15:45 Log-Likelihood: 349 pandas: powerful Python data analysis toolkit, Release 0.19.0 PyData uses a shared copyright model. Each contributor maintains copyright over their contributions to PyData. However, it is important ================================ Dep. Variable: hr No. Observations: 68 Model: Poisson Df Residuals: 63 Method: MLE Df Model: 4 Date: Son, 02 Okt 2016 Pseudo R-squ.: 0.6878 Time: 16:19:21 Log-Likelihood:
    0 码力 | 1937 页 | 12.03 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.19.1

    ================================ Dep. Variable: hr No. Observations: 68 Model: Poisson Df Residuals: 63 Method: MLE Df Model: 4 Date: Don, 03 Nov 2016 Pseudo R-squ.: 0.6878 Time: 17:08:14 Log-Likelihood: 351 pandas: powerful Python data analysis toolkit, Release 0.19.1 PyData uses a shared copyright model. Each contributor maintains copyright over their contributions to PyData. However, it is important ================================ Dep. Variable: hr No. Observations: 68 Model: Poisson Df Residuals: 63 Method: MLE Df Model: 4 Date: Don, 03 Nov 2016 Pseudo R-squ.: 0.6878 Time: 16:46:53 Log-Likelihood:
    0 码力 | 1943 页 | 12.06 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.20.3

    ================================ Dep. Variable: hr No. Observations: 68 Model: Poisson Df Residuals: 63 Method: MLE Df Model: 4 Date: Fri, 07 Jul 2017 Pseudo R-squ.: 0.6878 Time: 12:29:29 Log-Likelihood: 397 pandas: powerful Python data analysis toolkit, Release 0.20.3 PyData uses a shared copyright model. Each contributor maintains copyright over their contributions to PyData. However, it is important ================================ Dep. Variable: hr No. Observations: 68 Model: Poisson Df Residuals: 63 Method: MLE Df Model: 4 Date: Fri, 07 Jul 2017 Pseudo R-squ.: 0.6878 Time: 12:24:55 Log-Likelihood:
    0 码力 | 2045 页 | 9.18 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.20.2

    ================================ Dep. Variable: hr No. Observations: 68 Model: Poisson Df Residuals: 63 Method: MLE Df Model: 4 Date: Sun, 04 Jun 2017 Pseudo R-squ.: 0.6878 Time: 16:28:52 Log-Likelihood: 395 pandas: powerful Python data analysis toolkit, Release 0.20.2 PyData uses a shared copyright model. Each contributor maintains copyright over their contributions to PyData. However, it is important ================================ Dep. Variable: hr No. Observations: 68 Model: Poisson Df Residuals: 63 Method: MLE Df Model: 4 Date: Sun, 04 Jun 2017 Pseudo R-squ.: 0.6878 Time: 16:24:37 Log-Likelihood:
    0 码力 | 1907 页 | 7.83 MB | 1 年前
    3
共 32 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
pandaspowerfulPythondataanalysistoolkit0.250.130.170.140.240.190.20
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩