积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(11)机器学习(11)

语言

全部英语(7)中文(简体)(4)

格式

全部PDF文档 PDF(11)
 
本次搜索耗时 0.022 秒,为您找到相关结果约 11 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 AI大模型千问 qwen 中文文档

    device EMBEDDING_DEVICE = "cuda" # return top-k text chunk from vector store VECTOR_SEARCH_TOP_K = 3 CHAIN_TYPE = 'stuff' embedding_model_dict = { "text2vec": "your text2vec model path", } llm = Qwen() embeddings input_variables=["context_str", "question"] ) chain_type_kwargs = {"prompt": prompt, "document_variable_name": "context_str"} qa = RetrievalQA.from_chain_type( llm=llm, chain_type=CHAIN_TYPE, retriever=docsearch.as_r as_retriever(search_kwargs={"k": VECTOR_SEARCH_TOP_K}), chain_type_kwargs=chain_type_kwargs) query = "Give me a short introduction to large language model." (续下页) 48 Chapter 1. 文档 Qwen (接上页) print(qa
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 20. 链式法则

    ▪ e.g. Softmax Chain rule ▪ ?? ?? = ?? ?? ?? ?? ▪ ?2 = ?1?2 + ?2 ▪ ?1 = ??1 + ?1 ▪ ??2 ??1 = ??(?1) ??1 = ??(?1) ?y1 ??1 ??1 = ?2 ∗ ? ▪ ?2 = (??1 + ?1) ∗ w2 + b2 Chain rule ▪ ?? ???
    0 码力 | 10 页 | 610.60 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    of the association for computational linguistics: Human language technologies. 2011. mechanism to chain multiple augmentations. It can be replaced with any other library per individual preference. %%capture [nltk_download(item) for item in ['punkt', 'wordnet']] aug_args = dict(aug_p=0.3, aug_max=40) chain = [ nas.random.RandomSentAug(**aug_args), naw.RandomWordAug(action='delete', **aug_args), naw. naw.RandomWordAug(action='substitute', **aug_args), nac.KeyboardAug() ] flow = naf.Sometimes(chain, pipeline_p=0.3) The nlpaug_fn() function just wraps up the augmentation calls in a tf.py_function
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 Machine Learning

    with a directed acyclic graph describing how the functions are composed together • E.g., we use a chain to represent f(x) = f3(f2(f1(x))) • If we take sigmod function as the activation function • z1 = Fundamental Equations • Proof: Rewrite δ[l] j = ∂L/∂z[l] j in terms of δ[l] k = ∂L/∂z[l+1] k • By the chain rule, δ[l] j = ∂L ∂z[l] j = � k ∂L ∂z[l+1] k ∂z[l+1] k ∂z[l] j = � k ∂z[l+1] k ∂z[l] j δ[l+1]
    0 码力 | 19 页 | 944.40 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    weight of the i-th layer, , which is the gradient for that layer’s weight. Let’s start by using the chain rule, to compute the partial derivative of the loss function with respect to as follows: And from , we can calculate which is simply . More generally, we can calculate , and from that using the chain rule again. As you can see, if the network has a large number of layers and the weights25 have small
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 Lecture 5: Gaussian Discriminant Analysis, Naive Bayes

    is true given event B is true P(A | B) = P(A, B) P(B) , P(A, B) = P(A | B)P(B) Corollary: The chain rule P (A1, A2, · · · , Ak) = n � k=1 P (Ak | A1, A2, · · · , Ak−1) Example: P(A4, A3, A2, A1) y(0), z(0)) = q Suppose h(t) = f (x(t), y(t), z(t)) such that h(t) has a maximum at t = 0 By the chain rule h′(t) = ∇f |r(t) ·r′(t) Since t = 0 is a local maximum, we have h′(0) = ∇f |q ·r′(0) = 0 ∇f
    0 码力 | 122 页 | 1.35 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 21. MLP反向传播推导

    MLP反向传播 主讲人:龙良曲 Chain rule ▪ ?? ???? ? = ?? ??? 1 ??? 1 ?? = ?? ??? 2 ??? 2 ??? 1 ??? 1 ?? ∑ E ?? ∑ ??? ? ??? ? ?? ? ?? ? Multi-output Perceptron ∑ σ E ?0 0 ?1 0 ?2 0
    0 码力 | 15 页 | 940.28 KB | 1 年前
    3
  • pdf文档 人工智能发展史

    ctures/backprop_old.pdf NO! Multi-Layer Perceptron is coming ▪ New Issue: How to train MLP ▪ Chain Rules => Backpropagation http://www.iro.umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf
    0 码力 | 54 页 | 3.87 MB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    Autograd • Automatic Differentiation Package • Don’t need to worry about partial differentiation, chain rule etc.. • backward() does that • loss.backward() • Gradients are accumulated for each step by
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Lecture 2: Linear Regression

    = lim h→0 g(h) − g(0) h = lim h→0 f (x + hu) − g(0) h = ∇uf (x) (1) On the other hand, by the chain rule, g′(h) = n � i=1 f ′ i (x) d dh(xi + hui) = n � i=1 f ′ i (x)ui (2) Let h = 0, then g′(0)
    0 码力 | 31 页 | 608.38 KB | 1 年前
    3
共 11 条
  • 1
  • 2
前往
页
相关搜索词
AI模型千问qwen中文文档深度学习PyTorch入门实战20链式法则链式法则EfficientDeepLearningBookEDLChapterTechniquesMachineAdvancedTechnicalReviewLectureGaussianDiscriminantAnalysisNaiveBayes21MLP反向传播推导人工智能人工智能发展发展史TutorialLinearRegression
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩