积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(25)机器学习(25)

语言

全部英语(18)中文(简体)(7)

格式

全部PDF文档 PDF(25)
 
本次搜索耗时 0.026 秒,为您找到相关结果约 25 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Lecture 5: Gaussian Discriminant Analysis, Naive Bayes

    true given event B is true P(A | B) = P(A, B) P(B) , P(A, B) = P(A | B)P(B) Corollary: The chain rule P (A1, A2, · · · , Ak) = n � k=1 P (Ak | A1, A2, · · · , Ak−1) Example: P(A4, A3, A2, A1) = P(A4 Feng Li (SDU) GDA, NB and EM September 27, 2023 16 / 122 Bayes’ Theorem Bayes’ theorem (or Bayes’ rule) describes the probability of an event, based on prior knowledge of conditions that might be related z(0)) = q Suppose h(t) = f (x(t), y(t), z(t)) such that h(t) has a maximum at t = 0 By the chain rule h′(t) = ∇f |r(t) ·r′(t) Since t = 0 is a local maximum, we have h′(0) = ∇f |q ·r′(0) = 0 ∇f |q
    0 码力 | 122 页 | 1.35 MB | 1 年前
    3
  • pdf文档 Experiment 1: Linear Regression

    performed iteratively, and in each iteration, we update parameter θ according to the the following rule θj := θj − α 1 m m � i=1 (hθ(x(i)) − y(i))x(i) j (3) where α is so-called “learning rate” based But since in this example we have only one feature, being able to plot this gives a nice sanity-check on our result. (3) Finally, we’d like to make some predictions using the learned hypothesis. Use columns(z) and y = 1 : rows(z). Therefore, z(i, j) is actually calculated based on x(j) and y(i). This rule is also applicable to the contour function. We can specify the number and the distribution of contours
    0 码力 | 7 页 | 428.11 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    pre-trained model. We will use this pre-processing layer to tokenize our training and test datasets. # Check out the TF hub website for more preprocessors preprocessor = hub.KerasLayer( 'https://tfhub.dev of the i-th layer, , which is the gradient for that layer’s weight. Let’s start by using the chain rule, to compute the partial derivative of the loss function with respect to as follows: And from the can calculate which is simply . More generally, we can calculate , and from that using the chain rule again. As you can see, if the network has a large number of layers and the weights25 have small
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    whatever device (cuda or cpu) • Fallback to cpu if gpu is unavailable: • torch.cuda.is_available() • Check cpu/gpu tensor OR numpy array ? • type(t) or t.type() • returns • numpy.ndarray • torch.Tensor • Autograd • Automatic Differentiation Package • Don’t need to worry about partial differentiation, chain rule etc.. • backward() does that • loss.backward() • Gradients are accumulated for each step by default:
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 20. 链式法则

    Derivative Rules Basic Rule ▪ ? + ? ▪ ? − ? Product rule ▪ ?? ′ = ?′? + ??′ ▪ ?4′ = ?2 ∗ ?2 ′ = 2? ∗ ?2 + ?2 ∗ 2? = 4?3 Quotient Rule ▪ ? ? = ?′?+??′ ?2 ▪ e.g. Softmax Chain rule ▪ ?? ?? = ?? 1 ▪ ??2 ??1 = ??(?1) ??1 = ??(?1) ?y1 ??1 ??1 = ?2 ∗ ? ▪ ?2 = (??1 + ?1) ∗ w2 + b2 Chain rule ▪ ?? ???? ? = ?? ??? 1 ??? 1 ?? = ?? ??? 2 ??? 2 ??? 1 ??? 1 ?? ∑ E ?? ∑ ???
    0 码力 | 10 页 | 610.60 KB | 1 年前
    3
  • pdf文档 Experiment 2: Logistic Regression and Newton's Method

    objective function is gradient descent algorithm, where we update θ iteratively according to the following rule θ ← θ − α∇θL(θ) (6) until the difference between the objective function values in successive iterations Newton’s Method Our goal is to use Newton’s method to minimize this function. Recall that the update rule for Newton’s method is θ(t+1) = θ(t) − H−1∇θL In logistic regression, the Hessian is H = 1 m
    0 码力 | 4 页 | 196.41 KB | 1 年前
    3
  • pdf文档 Lecture Notes on Linear Regression

    @✓n ]T (2) denote the gradient of J(✓). In each iteration, we update ✓ according to the following rule: ✓ ✓ � ↵rJ(✓) (3) where ↵ is a step size. In more details, ✓j ✓j � ↵@J(✓) @✓j (4) The update model, rJ(✓; x(i), y(i)) is defined as rJ(✓; x(i), y(i)) = (✓T x(i) � y(i))x(i) (6) and the update rule is ✓j ✓j � ↵(✓T x(i) � y(i))x(i) j (7) Algorithm 2: Stochastic Gradient Descent for Linear Regression
    0 码力 | 6 页 | 455.98 KB | 1 年前
    3
  • pdf文档 Lecture 4: Regularization and Bayesian Statistics

    Bayes Rule p(θ | D) = p(θ)p(D | θ) p(D) p(θ): Prior probability of θ (without having seen any data) p(D): Probability of the data (independent of θ) p(D) = � θ p(θ)p(D | θ)dθ The Bayes Rule lets
    0 码力 | 25 页 | 185.30 KB | 1 年前
    3
  • pdf文档 Lecture 2: Linear Regression

    lim h→0 g(h) − g(0) h = lim h→0 f (x + hu) − g(0) h = ∇uf (x) (1) On the other hand, by the chain rule, g′(h) = n � i=1 f ′ i (x) d dh(xi + hui) = n � i=1 f ′ i (x)ui (2) Let h = 0, then g′(0) = GD Algorithm (Contd.) In more details, we update each component of θ according to the fol- lowing rule θj ← θj − α∂J(θ) ∂θj , ∀j = 0, 1, · · · , n Calculating the gradient for linear regression ∂J(θ)
    0 码力 | 31 页 | 608.38 KB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-时间序列总结

    重采样方法(resample) Pandas中的resample()是一个对常规时间序 列数据重新采样和频率转换的便捷的方法。 resample(rule, how=None, axis=0, fill_method=None, clo sed=None, label=None, ...) ➢ rule -- 表示重采样频率的字符串或DateOffset。 ➢ fill_method -- 表示升采样时如何插值。
    0 码力 | 67 页 | 1.30 MB | 1 年前
    3
共 25 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
LectureGaussianDiscriminantAnalysisNaiveBayesExperimentLinearRegressionEfficientDeepLearningBookEDLChapterAdvancedTechniquesTechnicalReviewPyTorchTutorial深度学习入门实战20链式法则链式法则LogisticandNewtonMethodNotesonRegularizationBayesianStatistics机器课程温州大学时间序列总结
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩