积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(335)VirtualBox(113)Apache Kyuubi(44)Pandas(32)OpenShift(30)机器学习(25)Kubernetes(21)Istio(14)Apache Flink(12)Service Mesh(7)

语言

全部英语(247)中文(简体)(81)英语(3)中文(简体)(2)俄语(1)中文(繁体)(1)

格式

全部PDF文档 PDF(307)其他文档 其他(24)PPT文档 PPT(3)DOC文档 DOC(1)
 
本次搜索耗时 0.045 秒,为您找到相关结果约 335 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • Apache Kyuubi
  • Pandas
  • OpenShift
  • 机器学习
  • Kubernetes
  • Istio
  • Apache Flink
  • Service Mesh
  • 全部
  • 英语
  • 中文(简体)
  • 英语
  • 中文(简体)
  • 俄语
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 4/09: Flow control and load shedding ??? Vasiliki Kalavri | Boston University 2020 Keeping up with the producers • Producers (back-pressure, flow control) 2 ??? Vasiliki Kalavri | Boston University 2020 Load management approaches 3 ! Load shedder (a) Load shedding (b) Back-pressure (c) Elasticity Selectively drop records: Suitable for transient load increase. Scale resource allocation: • Addresses the case of increased load and additionally ensures no resources are left idle when the input load decreases. ??? Vasiliki
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • ppt文档 KubeCon2020/大型Kubernetes集群的资源编排优化

    been the general trend. How to manage so many clusters ,resources and businesses How to ensure load balancing of cluster nodes 1 2 Improper resource requests 3 Multi-tenant resource preemption How Business N … How to ensure load balancing of cluster nodes ? Dynamic-Scheduler Node1 Node2 Kube-scheduler Pod Request Load Level Request Load Level Real Load Level Real Load Level Assigned to Node2 but high load, while some nodes have high resource requests but low load. Dynamic-Scheduler Node1 Node2 Kube-scheduler Pod Request Load Level Request Load Level Real Load Level Real Load Level
    0 码力 | 27 页 | 3.91 MB | 1 年前
    3
  • pdf文档 Deploying and ScalingKubernetes with Rancher

    Discovery ................................................................................ 6 1.3.7 Load Balancing........................................................................................ service for an Application .....................................................26 3.3 Load Balancing using Rancher Load Balancing services ............................................27 3.4 Service Discovery one needs robust cluster management capabilities that can handle scheduling, service discovery, load balancing, resource monitoring and isolation, and more. For years, Google has used a cluster manager
    0 码力 | 66 页 | 6.10 MB | 1 年前
    3
  • pdf文档 OpenShift Container Platform 4.13 网络

    AWS LOAD BALANCER OPERATOR 24.1. AWS LOAD BALANCER OPERATOR 发行注记 24.2. OPENSHIFT CONTAINER PLATFORM 中的 AWS LOAD BALANCER OPERATOR 24.3. 了解 AWS LOAD BALANCER OPERATOR 24.4. 在安全令牌服务集群中安装 AWS LOAD BALANCER BALANCER OPERATOR 24.5. 创建 AWS LOAD BALANCER CONTROLLER 实例 24.6. 创建多个入口 24.7. 添加 TLS 终止 24.8. 配置集群范围代理 136 139 139 139 140 140 142 142 167 170 184 184 186 188 188 190 190 193 193 194 195 Container Platform API 的请求 中提供 OAuth 访问令牌或 X.509 客户端证书来进行身份验证。 AWS Load Balancer Operator AWS Load Balancer (ALB) Operator 部署和管理 aws-load-balancer-controller 的实例。 Cluster Network Operator Cluster Network
    0 码力 | 697 页 | 7.55 MB | 1 年前
    3
  • pdf文档 keras tutorial

    reloaded at any time. Keras 41 config = layer_1.get_config() from_config Load the layer from the configuration object of the layer. config = layer_1.get_config() reload_layer Serialize the model Keras provides methods to serialize the model into object as well as json and load it again later. They are as follows:  get_config(): Returns the model as an object. config 10,000 test images. Below code can be used to load the dataset: from keras.datasets import mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() where  Line 1 imports minst from the
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    samples are provided to bridge the theory and practice gap. We have prepared a few helper functions: load_image(), show_image(), transform() and transform_and_show(), which will be used to transform the images preprocessing.image import ImageDataGenerator from urllib.request import urlopen IMG_SIZE = 224 def load_image(url): with urlopen(url) as request: img_array = np.asarray(bytearray(request.read()), dtype=np transform_opts) def transform_and_show(image_path, **transform_opts): # Load the image data # The data is formatted as (H, W, C) image = load_image(image_path) # Transformed Image transformed_image = transform(image
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    的实例: from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto # Now you do not need to add "trust_remote_code=True" model = AutoModelForCausalLM 进行对话的示例: from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto # Now you do not need to add "trust_remote_code=True" model = AutoModelForCausalLM 5-7B-Chat-AWQ : from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen1.5-7B-Chat-AWQ", # the quantized
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 Istio is a long wild river: how to navigate it safely

    Istio End of 2021 100% services migrated to Istio 8 Features currently used: ● HTTP/2 Load-balancing ● Traffic Shifting ● mTLS Features under investigation: ● Retries ● Circuit breaking Istio ● Moving HTTP/2 load-balancing from client-side to Envoy ● Label selector updates for app and version labels ● Istio default retry policy ● Istio proxy performance and load testing ● Abstracting Istio features 44 Moving HTTP/2 load-balancing from client-side to Envoy Adopting Istio ● We use gRPC heavily in our microservices ● But Kubernetes is pretty bad at load-balancing it ● So we solved it
    0 码力 | 69 页 | 1.58 MB | 1 年前
    3
  • pdf文档 Istio at Scale: How eBay is building a massive Multitenant Service Mesh using Istio

    AZ ○ Shared-Nothing Architecture ■ Hosts services catering to the AZ, e.g., AZ IPAM, Network Load-balancers, etc. ■ Full isolation by confining service failures to AZ boundary AZ 1 AZ 2 AZ n Control Plane Global Control Plane Region Rn Delegate #IstioCon Load balancing & Traffic Flow ● Two tiers of hardware Load-Balancers (LB) ● Application-Tier LB ○ K8s service realized on Application-Tier DNS lookup Application-Tier Load-Balancer Web-Tier Load-Balancer Application-Tier Load-Balancer Web-Tier Load-Balancer Application-Tier Load-Balancer Web-Tier Load-Balancer Pods Pods Pods AZ
    0 码力 | 22 页 | 505.96 KB | 1 年前
    3
  • pdf文档 Skew mitigation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    the ball at the least full bin: • when d=2, the maximum load is ln ln n / ln 2 + O(1), with high probability • when d>2, the maximum load keeps decreasing, but only by a constant factor 10 • Consider the maximum load is Θ(ln n/ln ln n), with high probability ??? Vasiliki Kalavri | Boston University 2020 Dynamic resource allocation • Choose one among n workers • check the load of each worker worker and send the item to the least loaded one • load checking for every item can be expensive • Choose two workers at random and send the item to the least loaded of those two • the system uses two
    0 码力 | 31 页 | 1.47 MB | 1 年前
    3
共 335 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 34
前往
页
相关搜索词
FlowcontrolandloadsheddingCS591K1DataStreamProcessingAnalyticsSpring2020KubeCon2020大型Kubernetes集群资源编排优化DeployingScalingKuberneteswithRancherOpenShiftContainerPlatform4.13网络kerastutorialEfficientDeepLearningBookEDLChapterTechniquesAI模型千问qwen中文文档Istioislongwildriverhowtonavigateitsafelyg2sIstioAtScaleeBaySudhiSkewmitigation
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩