 动手学深度学习 v2.0量轴‐1长度 的总和(4 + 4)。 X = torch.arange(12, dtype=torch.float32).reshape((3,4)) Y = torch.tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]]) torch.cat((X, Y), dim=0), torch.cat((X, Y), dim=1) (tensor([[ pandas as pd data = pd.read_csv(data_file) print(data) NumRooms Alley Price 0 NaN Pave 127500 1 2.0 NaN 106000 2 4.0 NaN 178100 3 NaN NaN 140000 2.2.2 处理缺失值 注意,“NaN”项代表缺失值。为了处理缺失的数据,典型的方法包括插值法和删除法,其中插值法用一个替 next page) 48 2. 预备知识 (continued from previous page) print(inputs) NumRooms Alley 0 3.0 Pave 1 2.0 NaN 2 4.0 NaN 3 3.0 NaN 对于inputs中的类别值或离散值,我们将“NaN”视为一个类别。由于“巷子类型”(“Alley”)列只接受两 种类型的类别值“Pave”和0 码力 | 797 页 | 29.45 MB | 1 年前3 动手学深度学习 v2.0量轴‐1长度 的总和(4 + 4)。 X = torch.arange(12, dtype=torch.float32).reshape((3,4)) Y = torch.tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]]) torch.cat((X, Y), dim=0), torch.cat((X, Y), dim=1) (tensor([[ pandas as pd data = pd.read_csv(data_file) print(data) NumRooms Alley Price 0 NaN Pave 127500 1 2.0 NaN 106000 2 4.0 NaN 178100 3 NaN NaN 140000 2.2.2 处理缺失值 注意,“NaN”项代表缺失值。为了处理缺失的数据,典型的方法包括插值法和删除法,其中插值法用一个替 next page) 48 2. 预备知识 (continued from previous page) print(inputs) NumRooms Alley 0 3.0 Pave 1 2.0 NaN 2 4.0 NaN 3 3.0 NaN 对于inputs中的类别值或离散值,我们将“NaN”视为一个类别。由于“巷子类型”(“Alley”)列只接受两 种类型的类别值“Pave”和0 码力 | 797 页 | 29.45 MB | 1 年前3
 Oracle VM VirtualBox UserManual_fr_FR.pdforg et qui offre les fonc- tionnalités supplémentaires suivantes : a) Périphériques virtuels USB 2.0 (EHCI) ; voir le chapitre 3.10.1, Paramètres USB, page 61. b) Support de VirtualBox Remote Desktop partir du menu contextuel de la liste des VMs du gestionnaire (en sélectionnant “Cloner”) ou de la vue “Dépôts” de la VM sélectionnée. Choisissez d’abord un @ouveau nom pour le clone. Quand vous sélectionnez standards par la VESA BIOS Extensions (VBE). 2Le support des invités 64 bits a été ajouté avec VirtualBox 2.0 ; le support des invités 64 bits sur des hôtes 32 bits a été ajouté avec VirtualBox 2.1. 50 3 Configurer0 码力 | 386 页 | 5.61 MB | 1 年前3 Oracle VM VirtualBox UserManual_fr_FR.pdforg et qui offre les fonc- tionnalités supplémentaires suivantes : a) Périphériques virtuels USB 2.0 (EHCI) ; voir le chapitre 3.10.1, Paramètres USB, page 61. b) Support de VirtualBox Remote Desktop partir du menu contextuel de la liste des VMs du gestionnaire (en sélectionnant “Cloner”) ou de la vue “Dépôts” de la VM sélectionnée. Choisissez d’abord un @ouveau nom pour le clone. Quand vous sélectionnez standards par la VESA BIOS Extensions (VBE). 2Le support des invités 64 bits a été ajouté avec VirtualBox 2.0 ; le support des invités 64 bits sur des hôtes 32 bits a été ajouté avec VirtualBox 2.1. 50 3 Configurer0 码力 | 386 页 | 5.61 MB | 1 年前3
 云原生图数据库解谜、容器化实践与 Serverless 应用实操+----------+ | "player" | +----------+ | "team" | +----------+ $ wget https:��docs.nebula�graph.io/2.0/basketballplayer-2.X.ngql $ ~/.nebula�kind/bin/console �u root �p password ��address=192.168.8.137 ┌──────────▼──────────┐ Siwi, /ˈsɪwi/ │ │ │ Web_Speech_API │ A PoC of Dialog System │ │ │ Vue.JS │ With Graph Database │ │ │ │ Backed Knowledge Graph │ │ # Browser End │ ├── README.md │ ├── package.json │ └── src │ ├── App.vue # Listen to user and pass Qs to S │ └── main.js └── wsgi.py wey-gu/nebula-siwi The Function0 码力 | 47 页 | 29.72 MB | 1 年前3 云原生图数据库解谜、容器化实践与 Serverless 应用实操+----------+ | "player" | +----------+ | "team" | +----------+ $ wget https:��docs.nebula�graph.io/2.0/basketballplayer-2.X.ngql $ ~/.nebula�kind/bin/console �u root �p password ��address=192.168.8.137 ┌──────────▼──────────┐ Siwi, /ˈsɪwi/ │ │ │ Web_Speech_API │ A PoC of Dialog System │ │ │ Vue.JS │ With Graph Database │ │ │ │ Backed Knowledge Graph │ │ # Browser End │ ├── README.md │ ├── package.json │ └── src │ ├── App.vue # Listen to user and pass Qs to S │ └── main.js └── wsgi.py wey-gu/nebula-siwi The Function0 码力 | 47 页 | 29.72 MB | 1 年前3
 OpenShift Container Platform 4.8 CLI 工具issues oc status --suggest # Tag the current image for the image stream 'openshift/ruby' and tag '2.0' into the image stream 'yourproject/ruby with tag 'tip' OpenShift Container Platform 4.8 CLI 工具 工具 wait 实验性:在一个或多个资源上等待特定条件。 用法示例 用法示例 2.5.1.142. oc whoami 返回有关当前会话的信息 oc tag openshift/ruby:2.0 yourproject/ruby:tip # Tag a specific image oc tag openshift/ruby@sha256:6b646fa6bf5e5e4c7fa 3 DefaultDevfileRegistry nodejs-vue Stack with Vue 3 DefaultDevfileRegistry php-laravel0 码力 | 152 页 | 1.24 MB | 1 年前3 OpenShift Container Platform 4.8 CLI 工具issues oc status --suggest # Tag the current image for the image stream 'openshift/ruby' and tag '2.0' into the image stream 'yourproject/ruby with tag 'tip' OpenShift Container Platform 4.8 CLI 工具 工具 wait 实验性:在一个或多个资源上等待特定条件。 用法示例 用法示例 2.5.1.142. oc whoami 返回有关当前会话的信息 oc tag openshift/ruby:2.0 yourproject/ruby:tip # Tag a specific image oc tag openshift/ruby@sha256:6b646fa6bf5e5e4c7fa 3 DefaultDevfileRegistry nodejs-vue Stack with Vue 3 DefaultDevfileRegistry php-laravel0 码力 | 152 页 | 1.24 MB | 1 年前3
 pandas: powerful Python data analysis toolkit - 0.24.0astype(float) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[12]: 0 1.0 1 2.0 2 NaN Name: A, Length: 3, dtype: float64 Reduction and groupby operations such as sum work. In floating-point array, since NaN is a float. In [29]: pd.array([1, 2, np.nan]) Out[29]: pandas: powerful Python data analysis toolkit - 0.24.0astype(float) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[12]: 0 1.0 1 2.0 2 NaN Name: A, Length: 3, dtype: float64 Reduction and groupby operations such as sum work. In floating-point array, since NaN is a float. In [29]: pd.array([1, 2, np.nan]) Out[29]:- [1.0, 2.0, nan] Length: 3, dtype: float64 1.1.4 Storing Interval and Period Data in Series and DataFrame Interval (GH21767). In the future this will raise a ValueError. Also changes the behavior of .from_codes([1. 1, 2.0]). • Bug in Categorical.sort_values() where NaN values were always positioned in front regardless 0 码力 | 2973 页 | 9.90 MB | 1 年前3
 pandas: powerful Python data analysis toolkit - 0.25.0\\\\\Out[7]: ˓→ height weight pandas: powerful Python data analysis toolkit - 0.25.0\\\\\Out[7]: ˓→ height weight- kind cat -0.4 18.6 -2.0 17.8 dog -28.0 40.0 -190.5 205.5 [2 rows x 4 columns] Previously, these raised a SpecificationError 126404 5 NaN 2013-01-02 0.275165 0.804503 0.446934 5 1.0 2013-01-03 -0.918029 -1.032644 1.599718 5 2.0 2013-01-04 -1.236791 -0.438204 0.101452 5 3.0 2013-01-05 -1.632181 -0.992838 0.741029 5 4.0 2013-01-06 NaN 2013-01-02 -0.275165 -0.804503 -0.446934 -5 -1.0 2013-01-03 -0.918029 -1.032644 -1.599718 -5 -2.0 2013-01-04 -1.236791 -0.438204 -0.101452 -5 -3.0 2013-01-05 -1.632181 -0.992838 -0.741029 -5 -4.0 2013-01-06 0 码力 | 2827 页 | 9.62 MB | 1 年前3
 pandas: powerful Python data analysis toolkit - 0.25.1\\\\\Out[7]: ˓→ height weight pandas: powerful Python data analysis toolkit - 0.25.1\\\\\Out[7]: ˓→ height weight- kind cat -0.4 18.6 -2.0 17.8 dog -28.0 40.0 -190.5 205.5 [2 rows x 4 columns] Previously, these raised a SpecificationError 612266 5 NaN 2013-01-02 -0.348338 1.733068 1.226064 5 1.0 2013-01-03 -0.136964 -0.276600 -0.614256 5 2.0 2013-01-04 0.066430 0.886690 1.544564 5 3.0 2013-01-05 0.996132 0.368752 1.232876 5 4.0 2013-01-06 NaN 2013-01-02 -0.348338 -1.733068 -1.226064 -5 -1.0 2013-01-03 -0.136964 -0.276600 -0.614256 -5 -2.0 2013-01-04 -0.066430 -0.886690 -1.544564 -5 -3.0 2013-01-05 -0.996132 -0.368752 -1.232876 -5 -4.0 2013-01-06 0 码力 | 2833 页 | 9.65 MB | 1 年前3
 pandas: powerful Python data analysis toolkit - 1.1.0Timothy J ˓→ male 54.0 0 0 17463 51.8625 E46 S 7 8 0 3 Palsson, Master. Gosta Leonard ˓→ male 2.0 3 1 349909 21.0750 NaN S To see the first N rows of a DataFrame, use the head() method with the required Moran, Mr. James male NaN 0 ˓→ 0 330877 8.4583 NaN Q 7 8 0 3 Palsson, Master. Gosta Leonard male 2.0 3 ˓→ 1 349909 21.0750 NaN S Similar to the conditional expression, the isin() conditional function Moran, Mr. James male NaN 0 ˓→ 0 330877 8.4583 NaN Q 7 8 0 3 Palsson, Master. Gosta Leonard male 2.0 3 ˓→ 1 349909 21.0750 NaN S Note: When combining multiple conditional statements, each condition0 码力 | 3229 页 | 10.87 MB | 1 年前3 pandas: powerful Python data analysis toolkit - 1.1.0Timothy J ˓→ male 54.0 0 0 17463 51.8625 E46 S 7 8 0 3 Palsson, Master. Gosta Leonard ˓→ male 2.0 3 1 349909 21.0750 NaN S To see the first N rows of a DataFrame, use the head() method with the required Moran, Mr. James male NaN 0 ˓→ 0 330877 8.4583 NaN Q 7 8 0 3 Palsson, Master. Gosta Leonard male 2.0 3 ˓→ 1 349909 21.0750 NaN S Similar to the conditional expression, the isin() conditional function Moran, Mr. James male NaN 0 ˓→ 0 330877 8.4583 NaN Q 7 8 0 3 Palsson, Master. Gosta Leonard male 2.0 3 ˓→ 1 349909 21.0750 NaN S Note: When combining multiple conditional statements, each condition0 码力 | 3229 页 | 10.87 MB | 1 年前3
 pandas: powerful Python data analysis toolkit - 1.1.1Moran, Mr. James male NaN 0 ˓→ 0 330877 8.4583 NaN Q 7 8 0 3 Palsson, Master. Gosta Leonard male 2.0 3 ˓→ 1 349909 21.0750 NaN S Similar to the conditional expression, the isin() conditional function Moran, Mr. James male NaN 0 ˓→ 0 330877 8.4583 NaN Q 7 8 0 3 Palsson, Master. Gosta Leonard male 2.0 3 ˓→ 1 349909 21.0750 NaN S Note: When combining multiple conditional statements, each condition DataFrame([tuple(list(x) + [val]) for x, val in np.ndenumerate(a)]) Out[29]: 0 1 2 3 0 0 0 0 1.0 1 0 0 1 2.0 2 0 0 2 3.0 3 0 0 3 4.0 4 0 1 0 5.0 .. .. .. .. ... 19 1 1 3 20.0 20 1 2 0 21.0 21 1 2 1 220 码力 | 3231 页 | 10.87 MB | 1 年前3 pandas: powerful Python data analysis toolkit - 1.1.1Moran, Mr. James male NaN 0 ˓→ 0 330877 8.4583 NaN Q 7 8 0 3 Palsson, Master. Gosta Leonard male 2.0 3 ˓→ 1 349909 21.0750 NaN S Similar to the conditional expression, the isin() conditional function Moran, Mr. James male NaN 0 ˓→ 0 330877 8.4583 NaN Q 7 8 0 3 Palsson, Master. Gosta Leonard male 2.0 3 ˓→ 1 349909 21.0750 NaN S Note: When combining multiple conditional statements, each condition DataFrame([tuple(list(x) + [val]) for x, val in np.ndenumerate(a)]) Out[29]: 0 1 2 3 0 0 0 0 1.0 1 0 0 1 2.0 2 0 0 2 3.0 3 0 0 3 4.0 4 0 1 0 5.0 .. .. .. .. ... 19 1 1 3 20.0 20 1 2 0 21.0 21 1 2 1 220 码力 | 3231 页 | 10.87 MB | 1 年前3
 pandas: powerful Python data analysis toolkit - 1.0.0nan], ....: 'z': [True, False, True]}) ....: In [19]: df Out[19]: x y z 0 abc 1.0 True 1 None 2.0 False 2 def NaN True [3 rows x 3 columns] In [20]: df.dtypes Out[20]: x object y float64 z bool 495508 5 NaN 2013-01-02 -1.217227 -0.814532 1.419296 5 1.0 2013-01-03 1.789156 0.984494 1.794371 5 2.0 2013-01-04 0.743967 -0.470009 -1.308438 5 3.0 2013-01-05 0.969829 -0.538649 -0.384829 5 4.0 2013-01-06 NaN 2013-01-02 -1.217227 -0.814532 -1.419296 -5 -1.0 2013-01-03 -1.789156 -0.984494 -1.794371 -5 -2.0 2013-01-04 -0.743967 -0.470009 -1.308438 -5 -3.0 2013-01-05 -0.969829 -0.538649 -0.384829 -5 -4.0 2013-01-060 码力 | 3015 页 | 10.78 MB | 1 年前3 pandas: powerful Python data analysis toolkit - 1.0.0nan], ....: 'z': [True, False, True]}) ....: In [19]: df Out[19]: x y z 0 abc 1.0 True 1 None 2.0 False 2 def NaN True [3 rows x 3 columns] In [20]: df.dtypes Out[20]: x object y float64 z bool 495508 5 NaN 2013-01-02 -1.217227 -0.814532 1.419296 5 1.0 2013-01-03 1.789156 0.984494 1.794371 5 2.0 2013-01-04 0.743967 -0.470009 -1.308438 5 3.0 2013-01-05 0.969829 -0.538649 -0.384829 5 4.0 2013-01-06 NaN 2013-01-02 -1.217227 -0.814532 -1.419296 -5 -1.0 2013-01-03 -1.789156 -0.984494 -1.794371 -5 -2.0 2013-01-04 -0.743967 -0.470009 -1.308438 -5 -3.0 2013-01-05 -0.969829 -0.538649 -0.384829 -5 -4.0 2013-01-060 码力 | 3015 页 | 10.78 MB | 1 年前3
共 274 条
- 1
- 2
- 3
- 4
- 5
- 6
- 28














 
 