Streaming in Apache FlinkstartLat Float the latitude of the ride start location endLon Float the longitude of the ride end location endLat Float the latitude of the ride end location passengerCnt0 码力 | 45 页 | 3.00 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.0.44 (continued from previous page) In [18]: stations_coord.head() Out[18]: location coordinates.latitude coordinates.longitude 0 BELAL01 51.23619 4.38522 1 BELHB23 51.17030 4.34100 2 BELLD01 51.10998 ....: In [21]: air_quality.head() Out[21]: date.utc location parameter value coordinates. ˓→latitude coordinates.longitude 0 2019-05-07 01:00:00+00:00 London Westminster no2 23.0 51. ˓→49467 -0.13193 ....: In [25]: air_quality.head() Out[25]: date.utc location parameter value coordinates. ˓→latitude coordinates.longitude id ˓→description name 0 2019-05-07 01:00:00+00:00 London Westminster no20 码力 | 3081 页 | 10.24 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.1.00 (continued from previous page) In [18]: stations_coord.head() Out[18]: location coordinates.latitude coordinates.longitude 0 BELAL01 51.23619 4.38522 1 BELHB23 51.17030 4.34100 2 BELLD01 51.10998 ....: In [21]: air_quality.head() Out[21]: date.utc location parameter value coordinates. ˓→latitude coordinates.longitude 0 2019-05-07 01:00:00+00:00 London Westminster no2 23.0 51. ˓→49467 -0.13193 ....: In [25]: air_quality.head() Out[25]: date.utc location parameter value coordinates. ˓→latitude coordinates.longitude id ˓→description name 0 2019-05-07 01:00:00+00:00 London Westminster no20 码力 | 3229 页 | 10.87 MB | 1 年前3
pandas: powerful Python data analysis toolkit -1.0.33 (continued from previous page) In [18]: stations_coord.head() Out[18]: location coordinates.latitude coordinates.longitude 0 BELAL01 51.23619 4.38522 1 BELHB23 51.17030 4.34100 2 BELLD01 51.10998 ....: In [21]: air_quality.head() Out[21]: date.utc location parameter value coordinates. ˓→latitude coordinates.longitude 0 2019-05-07 01:00:00+00:00 London Westminster no2 23.0 51. ˓→49467 -0.13193 ....: In [25]: air_quality.head() Out[25]: date.utc location parameter value coordinates. ˓→latitude coordinates.longitude id ˓→description name 0 2019-05-07 01:00:00+00:00 London Westminster no20 码力 | 3071 页 | 10.10 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.05 (continued from previous page) In [18]: stations_coord.head() Out[18]: location coordinates.latitude coordinates.longitude 0 BELAL01 51.23619 4.38522 1 BELHB23 51.17030 4.34100 2 BELLD01 51.10998 ....: In [21]: air_quality.head() Out[21]: date.utc location parameter value coordinates. ˓→latitude coordinates.longitude 0 2019-05-07 01:00:00+00:00 London Westminster no2 23.0 51. ˓→49467 -0.13193 correlations between two variables. Points could be for instance natural 2D coordinates like longitude and latitude in a map or, in general, any pair of metrics that can be plotted against each other. Parameters0 码力 | 3091 页 | 10.16 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.1.11 (continued from previous page) In [18]: stations_coord.head() Out[18]: location coordinates.latitude coordinates.longitude 0 BELAL01 51.23619 4.38522 1 BELHB23 51.17030 4.34100 2 BELLD01 51.10998 ....: In [21]: air_quality.head() Out[21]: date.utc location parameter value coordinates. ˓→latitude coordinates.longitude 0 2019-05-07 01:00:00+00:00 London Westminster no2 23.0 51. ˓→49467 -0.13193 correlations between two variables. Points could be for instance natural 2D coordinates like longitude and latitude in a map or, in general, any pair of metrics that can be plotted against each other. Parameters0 码力 | 3231 页 | 10.87 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.0.0correlations between two variables. Points could be for instance natural 2D coordinates like longitude and latitude in a map or, in general, any pair of metrics that can be plotted against each other. Parameters @property def center(self): # return the geographic center point of this DataFrame lat = self._obj.latitude lon = self._obj.longitude return (float(lon.mean()), float(lat.mean())) def plot(self): # plot in an interactive IPython session: >>> ds = pd.DataFrame({'longitude': np.linspace(0, 10), ... 'latitude': np.linspace(0, 20)}) >>> ds.geo.center (5.0, 10.0) >>> ds.geo.plot() # plots data on a map 40 码力 | 3015 页 | 10.78 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.25.0correlations between two variables. Points could be for instance natural 2D coordinates like longitude and latitude in a map or, in general, any pair of metrics that can be plotted against each other. Parameters page) def center(self): # return the geographic center point of this DataFrame lat = self._obj.latitude lon = self._obj.longitude return (float(lon.mean()), float(lat.mean())) def plot(self): # plot in an interactive IPython session: >>> ds = pd.DataFrame({'longitude': np.linspace(0, 10), ... 'latitude': np.linspace(0, 20)}) >>> ds.geo.center (5.0, 10.0) >>> ds.geo.plot() # plots data on a map 60 码力 | 2827 页 | 9.62 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.25.1correlations between two variables. Points could be for instance natural 2D coordinates like longitude and latitude in a map or, in general, any pair of metrics that can be plotted against each other. Parameters page) def center(self): # return the geographic center point of this DataFrame lat = self._obj.latitude lon = self._obj.longitude return (float(lon.mean()), float(lat.mean())) def plot(self): # plot in an interactive IPython session: >>> ds = pd.DataFrame({'longitude': np.linspace(0, 10), ... 'latitude': np.linspace(0, 20)}) >>> ds.geo.center (5.0, 10.0) >>> ds.geo.plot() # plots data on a map 60 码力 | 2833 页 | 9.65 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.2.3read_csv("data/air_quality_stations.csv") In [18]: stations_coord.head() Out[18]: location coordinates.latitude coordinates.longitude 0 BELAL01 51.23619 4.38522 1 BELHB23 51.17030 4.34100 2 BELLD01 51.10998 on="location ˓→") In [21]: air_quality.head() Out[21]: date.utc location parameter value coordinates. ˓→latitude coordinates.longitude 0 2019-05-07 01:00:00+00:00 London Westminster no2 23.0 51. ˓→49467 -0.13193 correlations between two variables. Points could be for instance natural 2D coordinates like longitude and latitude in a map or, in general, any pair of metrics that can be plotted against each other. Parameters0 码力 | 3323 页 | 12.74 MB | 1 年前3
共 103 条
- 1
- 2
- 3
- 4
- 5
- 6
- 11













