积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(254)VirtualBox(113)Apache Kyuubi(44)Pandas(32)OpenShift(15)机器学习(12)rancher(8)Apache Karaf(6)Kubernetes(5)Apache Flink(5)

语言

全部英语(226)中文(简体)(27)西班牙语(1)

格式

全部PDF文档 PDF(228)其他文档 其他(24)PPT文档 PPT(2)
 
本次搜索耗时 0.474 秒,为您找到相关结果约 254 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • Apache Kyuubi
  • Pandas
  • OpenShift
  • 机器学习
  • rancher
  • Apache Karaf
  • Kubernetes
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 西班牙语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Rancher Kubernetes Cryptographic Library FIPS 140-2 Non-Proprietary Security Policy

    required in order to build and compile the module: ● Clang compiler version 6.0.1 (http://releases.llvm.org/download.html) ● Go programming language version 1.10.3 (https://golang.org/dl/) ● Ninja build
    0 码力 | 16 页 | 551.69 KB | 1 年前
    3
  • pdf文档 Hadoop 迁移到阿里云MaxCompute 技术方案

    背景开发者直接上手,特别在大数据规模下性能强大。 * 完全自主开发的 compiler,语言功能开发更灵活,迭 代快,语法语义检查更加灵活高效 * 基于代价的优化器,更智能,更强大,更适合复杂的查 询 * 基于 LLVM 的代码生成,让执行过程更高效 * 支持复杂数据类型(array,map,struct) * 支持 Java、Python 语言的 UDF/UDAF/UDTF * 语法:Values、CTE、SEMIJOIN、FROM
    0 码力 | 59 页 | 4.33 MB | 1 年前
    3
  • pdf文档 Oracle VM VirtualBox UserManual.pdf

    key with a passphrase entered on the command line as an argument: $ openssl genrsa -aes256 -passout pass:user_passphrase -out ~/.oci/ oci_api_key.pem 2048 • To generate a private key without a passphrase: to use VMs configured to use a USB device, e.g. a USB pointing device or a USB pass-through device, you should also pass through the /dev/vboxusbmon device using the steps above. Oracle Solaris 11 does [‑‑nat‑tftp‑fileN=filename] [‑‑nat‑tftp‑serverN=IP‑address] [‑‑nat‑bind‑ipN=IP‑address] [‑‑nat‑dns‑pass‑domainN= on | off] [‑‑nat‑dns‑proxyN= on | off] [‑‑nat‑dns‑host‑resolverN= on | off] [‑‑nat‑localhostreachableN=
    0 码力 | 1186 页 | 5.10 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.17.0

    argument. When the function you wish to apply takes its data anywhere other than the first argument, pass a tuple of (function, keyword) indicating where the DataFrame should flow. For example: In [1]: import sample(n=1, weights=example_weights2) Out[23]: 0 0 dtype: int64 When applied to a DataFrame, one may pass the name of a column to specify sampling weights when sampling from rows. In [24]: df = DataFrame({'col1':[9 6 1.4 0.2 Iris-setosa 0.720000 Above was an example of inserting a precomputed value. We can also pass in a function to be evalutated. In [4]: iris.assign(sepal_ratio = lambda x: (x['SepalWidth'] /
    0 码力 | 1787 页 | 10.76 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.20.3

    above each subplot if suplots=True and title is a list of strings (GH14753) • DataFrame.plot can pass the matplotlib 2.0 default color cycle as a single string as color parameter, see here. (GH15516) set with align='left'|'mid'|'zero', the default is “left”, which is backward compatible; You can now pass a list of color=[color_negative, color_positive]. (GH14757) 1.3.2 Backwards incompatible API changes to_datetime(df) Out[31]: 0 2015-02-04 02:00:00 1 2016-03-05 03:00:00 dtype: datetime64[ns] You can pass only the columns that you need to assemble. In [32]: pd.to_datetime(df[['year', 'month', 'day']])
    0 码力 | 2045 页 | 9.18 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.19.0

    to_datetime(df) Out[31]: 0 2015-02-04 02:00:00 1 2016-03-05 03:00:00 dtype: datetime64[ns] You can pass only the columns that you need to assemble. In [32]: pd.to_datetime(df[['year', 'month', 'day']]) In the new API, you can either downsample OR upsample. The prior implementation would allow you to pass an aggregator function (like mean) even though you were upsampling, providing a bit of confusion. argument. When the function you wish to apply takes its data anywhere other than the first argument, pass a tuple of (function,keyword) indicating where the DataFrame should flow. For example: In [1]: import
    0 码力 | 1937 页 | 12.03 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.19.1

    to_datetime(df) Out[31]: 0 2015-02-04 02:00:00 1 2016-03-05 03:00:00 dtype: datetime64[ns] You can pass only the columns that you need to assemble. In [32]: pd.to_datetime(df[['year', 'month', 'day']]) In the new API, you can either downsample OR upsample. The prior implementation would allow you to pass an aggregator function (like mean) even though you were upsampling, providing a bit of confusion. argument. When the function you wish to apply takes its data anywhere other than the first argument, pass a tuple of (function,keyword) indicating where the DataFrame should flow. For example: In [1]: import
    0 码力 | 1943 页 | 12.06 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.20.2

    above each subplot if suplots=True and title is a list of strings (GH14753) • DataFrame.plot can pass the matplotlib 2.0 default color cycle as a single string as color parameter, see here. (GH15516) set with align='left'|'mid'|'zero', the default is “left”, which is backward compatible; You can now pass a list of color=[color_negative, color_positive]. (GH14757) 20 Chapter 1. What’s New pandas: powerful to_datetime(df) Out[31]: 0 2015-02-04 02:00:00 1 2016-03-05 03:00:00 dtype: datetime64[ns] You can pass only the columns that you need to assemble. In [32]: pd.to_datetime(df[['year', 'month', 'day']])
    0 码力 | 1907 页 | 7.83 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.21.1

    above each subplot if suplots=True and title is a list of strings (GH14753) • DataFrame.plot can pass the matplotlib 2.0 default color cycle as a single string as color parameter, see here. (GH15516) set with align='left'|'mid'|'zero', the default is “left”, which is backward compatible; You can now pass a list of color=[color_negative, color_positive]. (GH14757) 1.5.2 Backwards incompatible API changes to_datetime(df) Out[31]: 0 2015-02-04 02:00:00 1 2016-03-05 03:00:00 dtype: datetime64[ns] You can pass only the columns that you need to assemble. In [32]: pd.to_datetime(df[['year', 'month', 'day']])
    0 码力 | 2207 页 | 8.59 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.25.0

    min_height max_height average_weight kind cat 9.1 9.5 8.90 dog 6.0 34.0 102.75 [2 rows x 3 columns] Pass the desired columns names as the **kwargs to .agg. The values of **kwargs should be tuples where the representations of Pandas objects are now generally defined in __repr__, and calls to __str__ in general now pass the call on to the __repr__, if a specific __str__ method doesn’t exist, as is standard for Python use the head() and tail() methods. The default number of elements to display is five, but you may pass a custom number. In [4]: long_series = pd.Series(np.random.randn(1000)) In [5]: long_series.head()
    0 码力 | 2827 页 | 9.62 MB | 1 年前
    3
共 254 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 26
前往
页
相关搜索词
RancherKubernetesCryptographicLibraryFIPS140NonProprietarySecurityPolicyHadoop迁移阿里MaxCompute技术方案OracleVMVirtualBoxUserManualpdfpandaspowerfulPythondataanalysistoolkit0.170.200.190.210.25
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩