积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(314)VirtualBox(113)Apache Kyuubi(44)Pandas(32)机器学习(30)OpenShift(28)Apache Flink(14)Kubernetes(13)Istio(9)Service Mesh(6)

语言

全部英语(245)中文(简体)(62)英语(3)中文(繁体)(2)中文(简体)(2)

格式

全部PDF文档 PDF(287)其他文档 其他(24)PPT文档 PPT(2)DOC文档 DOC(1)
 
本次搜索耗时 0.581 秒,为您找到相关结果约 314 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • Apache Kyuubi
  • Pandas
  • 机器学习
  • OpenShift
  • Apache Flink
  • Kubernetes
  • Istio
  • Service Mesh
  • 全部
  • 英语
  • 中文(简体)
  • 英语
  • 中文(繁体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    to keep all users in memory? ??? Vasiliki Kalavri | Boston University 2020 We can use a hash function h to hash the user name (or IP) and select queries only when h(user) = 0. 13 In general: We can b1, …, b9. • select the query if the user hash value is in b0, b1, or b2. ??? Vasiliki Kalavri | Boston University 2020 We can use a hash function h to hash the user name (or IP) and select queries example, to get a 30% sample: • use 10 buckets, b0, b1, …, b9. • select the query if the user hash value is in b0, b1, or b2. How can we limit the sample size from growing indefinitely? ??? Vasiliki
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
  • pdf文档 Cardinality and frequency estimation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    3 Example use-case: Distinct users visiting one or multiple webpages Naive solution: maintain a hash table ??? Vasiliki Kalavri | Boston University 2020 How can we count the number of distinct elements or multiple webpages Naive solution: maintain a hash table Convert the stream into a multi-set of uniformly distributed random numbers using a hash function. ??? Vasiliki Kalavri | Boston University visiting one or multiple webpages Naive solution: maintain a hash table The more different elements we encounter in the stream, the more different hash values we shall see. Convert the stream into a multi-set
    0 码力 | 69 页 | 630.01 KB | 1 年前
    3
  • pdf文档 Istio Security Assessment

    Sensitive Information 002 Medium Default Production Profile Not Sufficiently Hardened 003 Medium Weak Hash Used for Integrity 009 Medium Go Trace Profiling Enabled By Default 013 Medium Permissive Kubernetes ig-profiles/ 14 | Google Istio Security Assessment Google / NCC Group Confidential Finding Weak Hash Used for Integrity Risk Medium Impact: Medium, Exploitability: Low Identifier NCC-GOIST2005-009 instructions into the cluster. Description A cryptographic hash is a function which takes a string of bytes and returns a small, fixed-size value. Hash functions guarantee that the same input always results in the
    0 码力 | 51 页 | 849.66 KB | 1 年前
    3
  • pdf文档 Rancher Kubernetes Cryptographic Library FIPS 140-2 Non-Proprietary Security Policy

    Requirements for Cryptographic Modules 12/3/2002 [140AA] FIPS 140-2 Annex A: Approved Security Functions 6/10/2019 [140AC] FIPS 140-2 Annex C: Approved Random Number Generators 6/10/2019 [140AD] 1, Recommendation for Existing Application-Specific Key Derivation Functions 12/23/2011 [FIPS 180-4] FIPS 180-4, Secure Hash Standard (SHS) 8/4/2015 [FIPS 186-4] FIPS 186-4, Digital Signature 197] FIPS 197, Advanced Encryption Standard (AES) 11/26/2001 [FIPS 198-1] FIPS 198-1, The Keyed Hash Message Authentication Code (HMAC) 7/16/2008 FIPS 140-2 Security Policy Rancher Kubernetes
    0 码力 | 16 页 | 551.69 KB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    ring using the same hash function. Consistent hashing ??? Vasiliki Kalavri | Boston University 2020 n1 n3 n2 0 2128 Nodes and data are mapped to a ring using the same hash function. ei: | Boston University 2020 n1 n3 n2 0 2128 Nodes and data are mapped to a ring using the same hash function. ei: h ek: h Consistent hashing ??? Vasiliki Kalavri | Boston University nodes. n4 In practice, each node is mapped to multiple points on the ring using multiple hash functions. Consistent hashing ??? Vasiliki Kalavri | Boston University 2020 n1 n3 n2 0 2128 When
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.0.0

    (GH28250) • Implemented pandas.core.window.Window.var() and pandas.core.window.Window. std() functions (GH26597) • Added encoding argument to DataFrame.to_string() for non-ascii text (GH28766) • Added testing module has been deprecated. Use the public API in pandas.testing documented at Testing functions (GH16232). • pandas.SparseArray has been deprecated. Use pandas.arrays.SparseArray (arrays. SparseArray) when grouping by a categorical column (GH28787) • Remove error raised due to duplicated input functions in named aggregation in DataFrame.groupby() and Series.groupby(). Previously error will be raised
    0 码力 | 3015 页 | 10.78 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.25.1

    known as “named aggregation”, for naming the output columns when applying multiple aggregation functions to specific columns (GH18366, GH26512). In [1]: animals = pd.DataFrame({'kind': ['cat', 'dog', groupby objects as well. Because there’s no need for column selection, the values can just be the functions to apply In [5]: animals.groupby("kind").height.agg( ...: min_height="min", ...: max_height="max" for more. 1.1.2 Groupby Aggregation with multiple lambdas You can now provide multiple lambda functions to a list-like aggregation in pandas.core.groupby.GroupBy. agg (GH26430). In [6]: animals.groupby('kind')
    0 码力 | 2833 页 | 9.65 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.25.0

    known as “named aggregation”, for naming the output columns when applying multiple aggregation functions to specific columns (GH18366, GH26512). In [1]: animals = pd.DataFrame({'kind': ['cat', 'dog', groupby objects as well. Because there’s no need for column selection, the values can just be the functions to apply In [5]: animals.groupby("kind").height.agg( ...: min_height="min", ...: max_height="max" for more. 1.1.2 Groupby Aggregation with multiple lambdas You can now provide multiple lambda functions to a list-like aggregation in pandas.core.groupby.GroupBy. agg (GH26430). In [6]: animals.groupby('kind')
    0 码力 | 2827 页 | 9.62 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.1.1

    . . . . . . . . . 658 2.15.1 Statistical functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658 2.15.2 Window functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 952 3.2 General functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 954 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1251 3.3.5 Binary operator functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1252 3.3.6 Function application
    0 码力 | 3231 页 | 10.87 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.1.0

    . . . . . . . . . 658 2.15.1 Statistical functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658 2.15.2 Window functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 951 3.2 General functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 954 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1251 3.3.5 Binary operator functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1252 3.3.6 Function application
    0 码力 | 3229 页 | 10.87 MB | 1 年前
    3
共 314 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 32
前往
页
相关搜索词
FilteringandsamplingstreamsCS591K1DataStreamProcessingAnalyticsSpring2020CardinalityfrequencyestimationIstioSecurityAssessmentRancherKubernetesCryptographicLibraryFIPS140NonProprietaryPolicyFaulttolerancedemoreconfigurationpandaspowerfulPythondataanalysistoolkit1.00.251.1
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩