积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(195)VirtualBox(112)Pandas(32)机器学习(21)Apache Flink(13)OpenShift(5)边缘计算(4)Kubernetes(3)Apache Karaf(2)dapr(1)

语言

全部英语(178)中文(简体)(17)

格式

全部PDF文档 PDF(193)其他文档 其他(2)
 
本次搜索耗时 0.555 秒,为您找到相关结果约 195 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • Pandas
  • 机器学习
  • Apache Flink
  • OpenShift
  • 边缘计算
  • Kubernetes
  • Apache Karaf
  • dapr
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Cardinality and frequency estimation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    | Boston University 2020 Counting distinct elements 2 ??? Vasiliki Kalavri | Boston University 2020 How can we count the number of distinct elements seen so far in a stream? 3 Example use-case: webpages ??? Vasiliki Kalavri | Boston University 2020 How can we count the number of distinct elements seen so far in a stream? 3 Example use-case: Distinct users visiting one or multiple webpages hash table ??? Vasiliki Kalavri | Boston University 2020 How can we count the number of distinct elements seen so far in a stream? 3 Example use-case: Distinct users visiting one or multiple webpages
    0 码力 | 69 页 | 630.01 KB | 1 年前
    3
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Sampling streams 5 ??? Vasiliki Kalavri | Boston University 2020 6 A sample is a set of data elements selected via some random process Samples: the most fundamental synopses input stream add to sample of fixed size, e.g. s elements. 14 ??? Vasiliki Kalavri | Boston University 2020 Instead of a fixed proportion, assume we can only store a sample S of fixed size, e.g. s elements. 14 How can we continuously 2020 Instead of a fixed proportion, assume we can only store a sample S of fixed size, e.g. s elements. 14 How can we continuously maintain a representative fixed-size sample of the stream so far
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.24.0

    implementation from pandas that depends on operators that are already defined on the underly- ing elements (scalars) of the ExtensionArray. See the ExtensionArray Operator Support documentation section Using DataFrame.itertuples() now creates itera- tors without internally allocating lists of all elements (GH20783) • Improved performance of Period constructor, additionally benefitting PeriodArray and • Bug in Series.hasnans() that could be incorrectly cached and return incorrect answers if null elements are introduced after an initial call (GH19700) • Series.isin() now treats all NaN-floats as equal
    0 码力 | 2973 页 | 9.90 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.14.0

    cases better (GH6531): – df.iloc[:-len(df)] is now empty – df.iloc[len(df)::-1] now enumerates all elements in reverse 4 Chapter 1. What’s New pandas: powerful Python data analysis toolkit, Release 0.14 prior to 0.14. (GH6760) • Added nunique and value_counts functions to Index for counting unique elements. (GH6734) • stack and unstack now raise a ValueError when the level keyword refers to a non-unique It contains both list and itera- tor versions of range, filter, map and zip, plus other necessary elements for Python 3 compatibility. lmap, lzip, lrange and lfilter all produce lists instead of iterators
    0 码力 | 1349 页 | 7.67 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    single-element RDDs by counting the number of elements in each RDD of the source DStream. ▶ union • Returns a new DStream that contains the union of the elements in two DStreams. 22 / 79 Transformations single-element RDDs by counting the number of elements in each RDD of the source DStream. ▶ union • Returns a new DStream that contains the union of the elements in two DStreams. 22 / 79 Transformations Transformations (4/4) ▶ reduce • Returns a new DStream of single-element RDDs by aggregating the elements in each RDD using a given function. ▶ reduceByKey • Returns a new DStream of (K, V) pairs where the values
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.25.0

    uniquely valued Index objects when called with cache=True, with arg including at least two different elements from the set {None, numpy.nan, pandas.NaT} (GH22305) • Bug in DataFrame and Series where timezone in Project Governance documents. The documents clarify how decisions are made and how the various elements of our commu- nity interact, including the relationship between open source collaborative development sample of a Series or DataFrame object, use the head() and tail() methods. The default number of elements to display is five, but you may pass a custom number. In [4]: long_series = pd.Series(np.random
    0 码力 | 2827 页 | 9.62 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.25.1

    uniquely valued Index objects when called with cache=True, with arg including at least two different elements from the set {None, numpy.nan, pandas.NaT} (GH22305) • Bug in DataFrame and Series where timezone in Project Governance documents. The documents clarify how decisions are made and how the various elements of our commu- nity interact, including the relationship between open source collaborative development sample of a Series or DataFrame object, use the head() and tail() methods. The default number of elements to display is five, but you may pass a custom number. In [4]: long_series = pd.Series(np.random
    0 码力 | 2833 页 | 9.65 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.2

    in Project Governance documents. The documents clarify how decisions are made and how the various elements of our commu- nity interact, including the relationship between open source collaborative development values can be assigned to the selected data. For example, to assign the name anonymous to the first 3 elements of the third column: In [26]: titanic.iloc[0:3, 3] = "anonymous" In [27]: titanic.head() Out[27]: These methods have in general matching names with the equivalent built-in string methods for single elements, but are applied element-wise (remember element-wise calculations?) on each of the values of the
    0 码力 | 3509 页 | 14.01 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.3

    in Project Governance documents. The documents clarify how decisions are made and how the various elements of our commu- nity interact, including the relationship between open source collaborative development values can be assigned to the selected data. For example, to assign the name anonymous to the first 3 elements of the third column: In [26]: titanic.iloc[0:3, 3] = "anonymous" In [27]: titanic.head() Out[27]: These methods have in general matching names with the equivalent built-in string methods for single elements, but are applied element-wise (remember element-wise calculations?) on each of the values of the
    0 码力 | 3603 页 | 14.65 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.4

    in Project Governance documents. The documents clarify how decisions are made and how the various elements of our commu- nity interact, including the relationship between open source collaborative development values can be assigned to the selected data. For example, to assign the name anonymous to the first 3 elements of the third column: In [26]: titanic.iloc[0:3, 3] = "anonymous" In [27]: titanic.head() Out[27]: These methods have in general matching names with the equivalent built-in string methods for single elements, but are applied element-wise (remember element-wise calculations?) on each of the values of the
    0 码力 | 3605 页 | 14.68 MB | 1 年前
    3
共 195 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 20
前往
页
相关搜索词
CardinalityandfrequencyestimationCS591K1DataStreamProcessingAnalyticsSpring2020FilteringsamplingstreamspandaspowerfulPythondataanalysistoolkit0.240.14ScalableSparkStreamingFlink0.251.3
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩