 pandas: powerful Python data analysis toolkit - 0.20.3improvements of note in each release. 1.1 v0.20.3 (July 7, 2017) This is a minor bug-fix release in the 0.20.x series and includes some small regression fixes and bug fixes. We recommend that all users upgrade downstream packages’ tests suites (GH16680) 1.1.1.1 Conversion • Bug in pickle compat prior to the v0.20.x series, when UTC is a timezone in a Series/DataFrame/Index (GH16608) • Bug in Series construction with categorical data (GH16793) 1.2 v0.20.2 (June 4, 2017) This is a minor bug-fix release in the 0.20.x series and includes some small regression fixes, bug fixes and performance improvements. We recommend0 码力 | 2045 页 | 9.18 MB | 1 年前3 pandas: powerful Python data analysis toolkit - 0.20.3improvements of note in each release. 1.1 v0.20.3 (July 7, 2017) This is a minor bug-fix release in the 0.20.x series and includes some small regression fixes and bug fixes. We recommend that all users upgrade downstream packages’ tests suites (GH16680) 1.1.1.1 Conversion • Bug in pickle compat prior to the v0.20.x series, when UTC is a timezone in a Series/DataFrame/Index (GH16608) • Bug in Series construction with categorical data (GH16793) 1.2 v0.20.2 (June 4, 2017) This is a minor bug-fix release in the 0.20.x series and includes some small regression fixes, bug fixes and performance improvements. We recommend0 码力 | 2045 页 | 9.18 MB | 1 年前3
 pandas: powerful Python data analysis toolkit - 0.20.2improvements of note in each release. 1.1 v0.20.2 (June 4, 2017) This is a minor bug-fix release in the 0.20.x series and includes some small regression fixes, bug fixes and performance improvements. We recommend grouping objects as the keys. For example, consider the following DataFrame: Note: New in version 0.20. A string passed to groupby may refer to either a column or an index level. If a string matches both doo -1.220674 baz bee -0.608004 foo bop 1.023898 qux bop 0.000895 dtype: float64 New in version 0.20. Index level names may be supplied as keys. In [37]: s.groupby(['first', 'second']).sum() Out[37]:0 码力 | 1907 页 | 7.83 MB | 1 年前3 pandas: powerful Python data analysis toolkit - 0.20.2improvements of note in each release. 1.1 v0.20.2 (June 4, 2017) This is a minor bug-fix release in the 0.20.x series and includes some small regression fixes, bug fixes and performance improvements. We recommend grouping objects as the keys. For example, consider the following DataFrame: Note: New in version 0.20. A string passed to groupby may refer to either a column or an index level. If a string matches both doo -1.220674 baz bee -0.608004 foo bop 1.023898 qux bop 0.000895 dtype: float64 New in version 0.20. Index level names may be supplied as keys. In [37]: s.groupby(['first', 'second']).sum() Out[37]:0 码力 | 1907 页 | 7.83 MB | 1 年前3
 pandas: powerful Python data analysis toolkit - 0.7.1year indiv 1977 A 1.20 0.60 B 1.50 0.50 C 1.70 0.80 1978 A 0.20 0.06 B 0.70 0.20 C 0.80 0.30 D 0.90 0.50 E 1.40 0.90 1979 C 0.20 0.15 D 0.14 0.05 E 0.50 0.15 F 1.20 0.50 G 3.40 1.90 H 5.40 40 2.70 I 6.40 1.20 In [598]: df.ix[1978] Out[598]: zit xit indiv A 0.2 0.06 B 0.7 0.20 C 0.8 0.30 D 0.9 0.50 E 1.4 0.90 15.2.3 Automatically “sniffing” the delimiter read_csv is capable of inferring zit xit 0 1977 A 1.2 0.60 1 1977 B 1.5 0.50 2 1977 C 1.7 0.80 3 1978 A 0.2 0.06 4 1978 B 0.7 0.20 5 1978 C 0.8 0.30 6 1978 D 0.9 0.50 By specifiying a chunksize to read_csv or read_table, the return0 码力 | 281 页 | 1.45 MB | 1 年前3 pandas: powerful Python data analysis toolkit - 0.7.1year indiv 1977 A 1.20 0.60 B 1.50 0.50 C 1.70 0.80 1978 A 0.20 0.06 B 0.70 0.20 C 0.80 0.30 D 0.90 0.50 E 1.40 0.90 1979 C 0.20 0.15 D 0.14 0.05 E 0.50 0.15 F 1.20 0.50 G 3.40 1.90 H 5.40 40 2.70 I 6.40 1.20 In [598]: df.ix[1978] Out[598]: zit xit indiv A 0.2 0.06 B 0.7 0.20 C 0.8 0.30 D 0.9 0.50 E 1.4 0.90 15.2.3 Automatically “sniffing” the delimiter read_csv is capable of inferring zit xit 0 1977 A 1.2 0.60 1 1977 B 1.5 0.50 2 1977 C 1.7 0.80 3 1978 A 0.2 0.06 4 1978 B 0.7 0.20 5 1978 C 0.8 0.30 6 1978 D 0.9 0.50 By specifiying a chunksize to read_csv or read_table, the return0 码力 | 281 页 | 1.45 MB | 1 年前3
 pandas: powerful Python data analysis toolkit - 0.7.2year indiv 1977 A 1.20 0.60 B 1.50 0.50 C 1.70 0.80 1978 A 0.20 0.06 B 0.70 0.20 C 0.80 0.30 D 0.90 0.50 E 1.40 0.90 1979 C 0.20 0.15 D 0.14 0.05 E 0.50 0.15 F 1.20 0.50 G 3.40 1.90 H 5.40 40 2.70 I 6.40 1.20 In [598]: df.ix[1978] Out[598]: zit xit indiv A 0.2 0.06 B 0.7 0.20 C 0.8 0.30 D 0.9 0.50 E 1.4 0.90 15.2.3 Automatically “sniffing” the delimiter read_csv is capable of inferring zit xit 0 1977 A 1.2 0.60 1 1977 B 1.5 0.50 2 1977 C 1.7 0.80 3 1978 A 0.2 0.06 4 1978 B 0.7 0.20 5 1978 C 0.8 0.30 6 1978 D 0.9 0.50 By specifiying a chunksize to read_csv or read_table, the return0 码力 | 283 页 | 1.45 MB | 1 年前3 pandas: powerful Python data analysis toolkit - 0.7.2year indiv 1977 A 1.20 0.60 B 1.50 0.50 C 1.70 0.80 1978 A 0.20 0.06 B 0.70 0.20 C 0.80 0.30 D 0.90 0.50 E 1.40 0.90 1979 C 0.20 0.15 D 0.14 0.05 E 0.50 0.15 F 1.20 0.50 G 3.40 1.90 H 5.40 40 2.70 I 6.40 1.20 In [598]: df.ix[1978] Out[598]: zit xit indiv A 0.2 0.06 B 0.7 0.20 C 0.8 0.30 D 0.9 0.50 E 1.4 0.90 15.2.3 Automatically “sniffing” the delimiter read_csv is capable of inferring zit xit 0 1977 A 1.2 0.60 1 1977 B 1.5 0.50 2 1977 C 1.7 0.80 3 1978 A 0.2 0.06 4 1978 B 0.7 0.20 5 1978 C 0.8 0.30 6 1978 D 0.9 0.50 By specifiying a chunksize to read_csv or read_table, the return0 码力 | 283 页 | 1.45 MB | 1 年前3
 pandas: powerful Python data analysis toolkit - 0.25.0year indiv 1977 A 1.20 0.60 B 1.50 0.50 C 1.70 0.80 1978 A 0.20 0.06 B 0.70 0.20 C 0.80 0.30 D 0.90 0.50 E 1.40 0.90 1979 C 0.20 0.15 D 0.14 0.05 E 0.50 0.15 F 1.20 0.50 G 3.40 1.90 H 5.40 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[174]: ˓→ zit xit indiv A 0.2 0.06 B 0.7 0.20 C 0.8 0.30 D 0.9 0.50 E 1.4 0.90 4.1. IO tools (text, CSV, HDF5, . . . ) 243 pandas: powerful read_excel('path_to_file.xls', 'Sheet1', converters={'MyInts': cfun}) Dtype specifications New in version 0.20. As an alternative to converters, the type for an entire column can be specified using the dtype0 码力 | 2827 页 | 9.62 MB | 1 年前3 pandas: powerful Python data analysis toolkit - 0.25.0year indiv 1977 A 1.20 0.60 B 1.50 0.50 C 1.70 0.80 1978 A 0.20 0.06 B 0.70 0.20 C 0.80 0.30 D 0.90 0.50 E 1.40 0.90 1979 C 0.20 0.15 D 0.14 0.05 E 0.50 0.15 F 1.20 0.50 G 3.40 1.90 H 5.40 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[174]: ˓→ zit xit indiv A 0.2 0.06 B 0.7 0.20 C 0.8 0.30 D 0.9 0.50 E 1.4 0.90 4.1. IO tools (text, CSV, HDF5, . . . ) 243 pandas: powerful read_excel('path_to_file.xls', 'Sheet1', converters={'MyInts': cfun}) Dtype specifications New in version 0.20. As an alternative to converters, the type for an entire column can be specified using the dtype0 码力 | 2827 页 | 9.62 MB | 1 年前3
 pandas: powerful Python data analysis toolkit - 0.7.3year indiv 1977 A 1.20 0.60 B 1.50 0.50 C 1.70 0.80 1978 A 0.20 0.06 B 0.70 0.20 C 0.80 0.30 D 0.90 0.50 E 1.40 0.90 1979 C 0.20 0.15 D 0.14 0.05 E 0.50 0.15 F 1.20 0.50 G 3.40 1.90 H 5.40 40 2.70 I 6.40 1.20 In [614]: df.ix[1978] Out[614]: zit xit indiv A 0.2 0.06 B 0.7 0.20 C 0.8 0.30 D 0.9 0.50 E 1.4 0.90 15.2.4 Automatically “sniffing” the delimiter read_csv is capable of inferring zit xit 0 1977 A 1.2 0.60 1 1977 B 1.5 0.50 2 1977 C 1.7 0.80 3 1978 A 0.2 0.06 4 1978 B 0.7 0.20 5 1978 C 0.8 0.30 6 1978 D 0.9 0.50 By specifiying a chunksize to read_csv or read_table, the return0 码力 | 297 页 | 1.92 MB | 1 年前3 pandas: powerful Python data analysis toolkit - 0.7.3year indiv 1977 A 1.20 0.60 B 1.50 0.50 C 1.70 0.80 1978 A 0.20 0.06 B 0.70 0.20 C 0.80 0.30 D 0.90 0.50 E 1.40 0.90 1979 C 0.20 0.15 D 0.14 0.05 E 0.50 0.15 F 1.20 0.50 G 3.40 1.90 H 5.40 40 2.70 I 6.40 1.20 In [614]: df.ix[1978] Out[614]: zit xit indiv A 0.2 0.06 B 0.7 0.20 C 0.8 0.30 D 0.9 0.50 E 1.4 0.90 15.2.4 Automatically “sniffing” the delimiter read_csv is capable of inferring zit xit 0 1977 A 1.2 0.60 1 1977 B 1.5 0.50 2 1977 C 1.7 0.80 3 1978 A 0.2 0.06 4 1978 B 0.7 0.20 5 1978 C 0.8 0.30 6 1978 D 0.9 0.50 By specifiying a chunksize to read_csv or read_table, the return0 码力 | 297 页 | 1.92 MB | 1 年前3
 pandas: powerful Python data analysis toolkit - 0.25.1year indiv 1977 A 1.20 0.60 B 1.50 0.50 C 1.70 0.80 1978 A 0.20 0.06 B 0.70 0.20 C 0.80 0.30 D 0.90 0.50 E 1.40 0.90 1979 C 0.20 0.15 D 0.14 0.05 E 0.50 0.15 F 1.20 0.50 G 3.40 1.90 H 5.40 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[174]: ˓→ zit xit indiv A 0.2 0.06 B 0.7 0.20 C 0.8 0.30 D 0.9 0.50 E 1.4 0.90 4.1. IO tools (text, CSV, HDF5, . . . ) 243 pandas: powerful read_excel('path_to_file.xls', 'Sheet1', converters={'MyInts': cfun}) Dtype specifications New in version 0.20. As an alternative to converters, the type for an entire column can be specified using the dtype0 码力 | 2833 页 | 9.65 MB | 1 年前3 pandas: powerful Python data analysis toolkit - 0.25.1year indiv 1977 A 1.20 0.60 B 1.50 0.50 C 1.70 0.80 1978 A 0.20 0.06 B 0.70 0.20 C 0.80 0.30 D 0.90 0.50 E 1.40 0.90 1979 C 0.20 0.15 D 0.14 0.05 E 0.50 0.15 F 1.20 0.50 G 3.40 1.90 H 5.40 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[174]: ˓→ zit xit indiv A 0.2 0.06 B 0.7 0.20 C 0.8 0.30 D 0.9 0.50 E 1.4 0.90 4.1. IO tools (text, CSV, HDF5, . . . ) 243 pandas: powerful read_excel('path_to_file.xls', 'Sheet1', converters={'MyInts': cfun}) Dtype specifications New in version 0.20. As an alternative to converters, the type for an entire column can be specified using the dtype0 码力 | 2833 页 | 9.65 MB | 1 年前3
 pandas: powerful Python data analysis toolkit - 0.24.0year indiv 1977 A 1.20 0.60 B 1.50 0.50 C 1.70 0.80 1978 A 0.20 0.06 B 0.70 0.20 C 0.80 0.30 D 0.90 0.50 E 1.40 0.90 1979 C 0.20 0.15 D 0.14 0.05 E 0.50 0.15 F 1.20 0.50 G 3.40 1.90 H 5.40 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[169]: ˓→ zit xit indiv A 0.2 0.06 B 0.7 0.20 C 0.8 0.30 D 0.9 0.50 E 1.4 0.90 Reading columns with a MultiIndex By specifying list of row read_excel('path_to_file.xls', 'Sheet1', converters={'MyInts': cfun}) dtype Specifications New in version 0.20. As an alternative to converters, the type for an entire column can be specified using the dtype0 码力 | 2973 页 | 9.90 MB | 1 年前3 pandas: powerful Python data analysis toolkit - 0.24.0year indiv 1977 A 1.20 0.60 B 1.50 0.50 C 1.70 0.80 1978 A 0.20 0.06 B 0.70 0.20 C 0.80 0.30 D 0.90 0.50 E 1.40 0.90 1979 C 0.20 0.15 D 0.14 0.05 E 0.50 0.15 F 1.20 0.50 G 3.40 1.90 H 5.40 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[169]: ˓→ zit xit indiv A 0.2 0.06 B 0.7 0.20 C 0.8 0.30 D 0.9 0.50 E 1.4 0.90 Reading columns with a MultiIndex By specifying list of row read_excel('path_to_file.xls', 'Sheet1', converters={'MyInts': cfun}) dtype Specifications New in version 0.20. As an alternative to converters, the type for an entire column can be specified using the dtype0 码力 | 2973 页 | 9.90 MB | 1 年前3
 pandas: powerful Python data analysis toolkit - 1.0.0year indiv 1977 A 1.20 0.60 B 1.50 0.50 C 1.70 0.80 1978 A 0.20 0.06 B 0.70 0.20 C 0.80 0.30 D 0.90 0.50 E 1.40 0.90 1979 C 0.20 0.15 D 0.14 0.05 E 0.50 0.15 F 1.20 0.50 G 3.40 1.90 (continues page) H 5.40 2.70 I 6.40 1.20 In [177]: df.loc[1978] Out[177]: zit xit indiv A 0.2 0.06 B 0.7 0.20 C 0.8 0.30 D 0.9 0.50 E 1.4 0.90 Reading columns with a MultiIndex By specifying list of row with conda, by using: conda install numba, see installing using miniconda. Note: As of Numba version 0.20, pandas objects cannot be passed directly to Numba-compiled functions. Instead, one must pass the0 码力 | 3015 页 | 10.78 MB | 1 年前3 pandas: powerful Python data analysis toolkit - 1.0.0year indiv 1977 A 1.20 0.60 B 1.50 0.50 C 1.70 0.80 1978 A 0.20 0.06 B 0.70 0.20 C 0.80 0.30 D 0.90 0.50 E 1.40 0.90 1979 C 0.20 0.15 D 0.14 0.05 E 0.50 0.15 F 1.20 0.50 G 3.40 1.90 (continues page) H 5.40 2.70 I 6.40 1.20 In [177]: df.loc[1978] Out[177]: zit xit indiv A 0.2 0.06 B 0.7 0.20 C 0.8 0.30 D 0.9 0.50 E 1.4 0.90 Reading columns with a MultiIndex By specifying list of row with conda, by using: conda install numba, see installing using miniconda. Note: As of Numba version 0.20, pandas objects cannot be passed directly to Numba-compiled functions. Instead, one must pass the0 码力 | 3015 页 | 10.78 MB | 1 年前3
 pandas: powerful Python data analysis toolkit - 1.027, 2017) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2609 5.7 Version 0.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2641 year indiv 1977 A 1.20 0.60 B 1.50 0.50 C 1.70 0.80 1978 A 0.20 0.06 B 0.70 0.20 C 0.80 0.30 D 0.90 0.50 E 1.40 0.90 1979 C 0.20 0.15 D 0.14 0.05 E 0.50 0.15 F 1.20 0.50 G 3.40 1.90 (continues page) H 5.40 2.70 I 6.40 1.20 In [177]: df.loc[1978] Out[177]: zit xit indiv A 0.2 0.06 B 0.7 0.20 C 0.8 0.30 D 0.9 0.50 E 1.4 0.90 Reading columns with a MultiIndex By specifying list of row0 码力 | 3091 页 | 10.16 MB | 1 年前3 pandas: powerful Python data analysis toolkit - 1.027, 2017) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2609 5.7 Version 0.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2641 year indiv 1977 A 1.20 0.60 B 1.50 0.50 C 1.70 0.80 1978 A 0.20 0.06 B 0.70 0.20 C 0.80 0.30 D 0.90 0.50 E 1.40 0.90 1979 C 0.20 0.15 D 0.14 0.05 E 0.50 0.15 F 1.20 0.50 G 3.40 1.90 (continues page) H 5.40 2.70 I 6.40 1.20 In [177]: df.loc[1978] Out[177]: zit xit indiv A 0.2 0.06 B 0.7 0.20 C 0.8 0.30 D 0.9 0.50 E 1.4 0.90 Reading columns with a MultiIndex By specifying list of row0 码力 | 3091 页 | 10.16 MB | 1 年前3
共 34 条
- 1
- 2
- 3
- 4













