 MLP网络层全军出击:全连接层 主讲人:龙良曲 I know nothing Be practical nn.Linear relu? concisely ▪ inherit from nn.Module ▪ init layer in __init__ ▪ implement forward() Step1. Step2. Step3. nn.ReLU v.s. F.relu()0 码力 | 13 页 | 992.88 KB | 1 年前3 MLP网络层全军出击:全连接层 主讲人:龙良曲 I know nothing Be practical nn.Linear relu? concisely ▪ inherit from nn.Module ▪ init layer in __init__ ▪ implement forward() Step1. Step2. Step3. nn.ReLU v.s. F.relu()0 码力 | 13 页 | 992.88 KB | 1 年前3
 VMware vSphere:优化和扩展培训服务介绍 VMware vSphere:优化和扩展 培训方式  讲师指导培训  实时在线培训 课程用时  为期五 (5) 天的讲师指导课堂培训  听课时间占 60%,动手实验时间占 40% 目标学员 经验丰富的系统管理员和系统集成人员 课程适用对象 ☒ 管理员 ☐ 专家 ☒ 工程师 ☒ 高级用户 ☐ 架构师 ☐ 专业人员 vCenter Server™ 5.0 讲授。 课程目标 课程结束后,您应能胜任以下工作:  配置和管理大型成熟企业的 ESXi 网络和存储系统。  管理 vSphere 环境变更。  优化所有 vSphere 组件的性能。  排除操作故障并找出造成这些故障的根本原因。  使用 VMware vSphere® ESXi™ Shell 和 VMware vSphere® Management 中的可扩展性主题也将在本课程中重复出现。 VMware vSphere:优化和扩展 VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001; 北京办公室 北京市海淀区科学院南路 2 号融科资讯中心 C 座 8 层 邮编:100190 电话:+86-400-816-06880 码力 | 2 页 | 341.36 KB | 1 年前3 VMware vSphere:优化和扩展培训服务介绍 VMware vSphere:优化和扩展 培训方式  讲师指导培训  实时在线培训 课程用时  为期五 (5) 天的讲师指导课堂培训  听课时间占 60%,动手实验时间占 40% 目标学员 经验丰富的系统管理员和系统集成人员 课程适用对象 ☒ 管理员 ☐ 专家 ☒ 工程师 ☒ 高级用户 ☐ 架构师 ☐ 专业人员 vCenter Server™ 5.0 讲授。 课程目标 课程结束后,您应能胜任以下工作:  配置和管理大型成熟企业的 ESXi 网络和存储系统。  管理 vSphere 环境变更。  优化所有 vSphere 组件的性能。  排除操作故障并找出造成这些故障的根本原因。  使用 VMware vSphere® ESXi™ Shell 和 VMware vSphere® Management 中的可扩展性主题也将在本课程中重复出现。 VMware vSphere:优化和扩展 VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001; 北京办公室 北京市海淀区科学院南路 2 号融科资讯中心 C 座 8 层 邮编:100190 电话:+86-400-816-06880 码力 | 2 页 | 341.36 KB | 1 年前3
 Flink如何实时分析Iceberg数据湖的CDC数据Flink如何实时分析Iceberg数据湖的CDC数据 阿里巴巴 李/松/胡争 23选择 Flink Ic+b+1g #2 常DCCDC 分析方案 #1 如3实时写 4F取 ## 未来规划 #4 #见的CDC分析方案 #1 离线 HBase 集u分析 CDC 数a 、CDC记录实时写入HBase。高吞P + 低延迟。 2、小vSg询延迟低。 3、集u可拓展 ci评C 4、数a格式q定HF23e,不cF拓展到 +arquet、Avro、Orcn。 t点 A3a/21 Kudu 维护 CDC 数据p 、支持L时更新数据,时效性佳。 2、CK加速,适合OLAP分析。 方案评估 优点 、cedKudup群,a较小众。维护 O本q。 2、H HDFS / S3 / OSS 等D裂。数据c e,且KAO本不如S3 / OSS。 3、Kudud批量P描不如3ar4u1t。 4、不支持增量SF。 4、不支持增量SF。 h点 直接D入CDC到Hi2+分析 、流程能E作 2、Hi2+存量数据不受增量数据H响。 方案评估 优点 、数据不是CR写入; 2、每次数据D致都要 MERGE 存量数据 。T+ 方GT新3R效性差。 3、不M持CR1ps+rt。 缺点 SCaDk + )=AFa IL()(数据 MER,E .NTO GE=DE US.N, chan>=E ON GE=DE.GE=D0 码力 | 36 页 | 781.69 KB | 1 年前3 Flink如何实时分析Iceberg数据湖的CDC数据Flink如何实时分析Iceberg数据湖的CDC数据 阿里巴巴 李/松/胡争 23选择 Flink Ic+b+1g #2 常DCCDC 分析方案 #1 如3实时写 4F取 ## 未来规划 #4 #见的CDC分析方案 #1 离线 HBase 集u分析 CDC 数a 、CDC记录实时写入HBase。高吞P + 低延迟。 2、小vSg询延迟低。 3、集u可拓展 ci评C 4、数a格式q定HF23e,不cF拓展到 +arquet、Avro、Orcn。 t点 A3a/21 Kudu 维护 CDC 数据p 、支持L时更新数据,时效性佳。 2、CK加速,适合OLAP分析。 方案评估 优点 、cedKudup群,a较小众。维护 O本q。 2、H HDFS / S3 / OSS 等D裂。数据c e,且KAO本不如S3 / OSS。 3、Kudud批量P描不如3ar4u1t。 4、不支持增量SF。 4、不支持增量SF。 h点 直接D入CDC到Hi2+分析 、流程能E作 2、Hi2+存量数据不受增量数据H响。 方案评估 优点 、数据不是CR写入; 2、每次数据D致都要 MERGE 存量数据 。T+ 方GT新3R效性差。 3、不M持CR1ps+rt。 缺点 SCaDk + )=AFa IL()(数据 MER,E .NTO GE=DE US.N, chan>=E ON GE=DE.GE=D0 码力 | 36 页 | 781.69 KB | 1 年前3
 大数据集成与Hadoop - IBM年 9 月 大数据集成与 Hadoop 可最大限度降低Hadoop计划风险并提高ROI的最佳实践 2 大数据集成与 Hadoop 简介 Apache Hadoop技术通过支持新的流程和架构,不断改进 大数据措施的经济性和活力,这样不仅有助于削减成本、增加 收益,而且还能树立竞争优势。Hadoop是一个开源软件项目, 支持在多个商业服务器群集间分散处理和存储大型数据集, 并可根据 MapReduce)。 但是,Hadoop基础架构本身并没有提供完整的大数据集成解 决方案,摆在人们面前的既有挑战,也有机遇,只有处理好这些 问题,才能安享各项优势,最大限度提高投资回报率 (ROI)。 大数据集成对于Hadoop措施的重要性 Hadoop的迅速崛起推动企业在如何抽取、管理、转换、存储和 分析大数据方面实现了范式转变。无论是要更深入的分析,还是 希望获得更出色的洞察、新产品、新服务以及更高的服务水平,都 依靠收集、移动、转换、清除、集成、治理、探索以及分析多种 不同来源的大量不同类型的数据来实现大数据与Hadoop项 目。实现所有这些目标需要运用富有弹性的端到端信息集成 解决方案,该解决方案不仅可实现大规模扩展,还能提供支持 Hadoop项目所需的基础架构、功能、流程和行为准则。 “在很大程度上,80%的大数据项目开发 精力用于数据集成,只有20%的精力投入 到数据分析中。” —Intel Corporation,“使用0 码力 | 16 页 | 1.23 MB | 1 年前3 大数据集成与Hadoop - IBM年 9 月 大数据集成与 Hadoop 可最大限度降低Hadoop计划风险并提高ROI的最佳实践 2 大数据集成与 Hadoop 简介 Apache Hadoop技术通过支持新的流程和架构,不断改进 大数据措施的经济性和活力,这样不仅有助于削减成本、增加 收益,而且还能树立竞争优势。Hadoop是一个开源软件项目, 支持在多个商业服务器群集间分散处理和存储大型数据集, 并可根据 MapReduce)。 但是,Hadoop基础架构本身并没有提供完整的大数据集成解 决方案,摆在人们面前的既有挑战,也有机遇,只有处理好这些 问题,才能安享各项优势,最大限度提高投资回报率 (ROI)。 大数据集成对于Hadoop措施的重要性 Hadoop的迅速崛起推动企业在如何抽取、管理、转换、存储和 分析大数据方面实现了范式转变。无论是要更深入的分析,还是 希望获得更出色的洞察、新产品、新服务以及更高的服务水平,都 依靠收集、移动、转换、清除、集成、治理、探索以及分析多种 不同来源的大量不同类型的数据来实现大数据与Hadoop项 目。实现所有这些目标需要运用富有弹性的端到端信息集成 解决方案,该解决方案不仅可实现大规模扩展,还能提供支持 Hadoop项目所需的基础架构、功能、流程和行为准则。 “在很大程度上,80%的大数据项目开发 精力用于数据集成,只有20%的精力投入 到数据分析中。” —Intel Corporation,“使用0 码力 | 16 页 | 1.23 MB | 1 年前3
 机器学习课程-温州大学-06深度学习-优化算法1 2023年04月 深度学习-优化算法 黄海广 副教授 2 01 小批量梯度下降 本章目录 02 优化算法 03 超参数调整和BatchNorm 04 Softmax 3 01 小批量梯度下降 02 优化算法 03 超参数调整和BatchNorm 04 Softmax 1.小批量梯度下降 4 小批量梯度下降 小批量梯度下降(Mini-Batch ?(?) ?? (?) (同步更新?? ,(j=0,1,...,n )) 5 小批量梯度下降 6 01 小批量梯度下降 02 优化算法 03 超参数调整和BatchNorm 04 Softmax 2.优化算法 7 伦敦温度的例子 days temperature ?1 = 40°F ?2 = 49°F ?3 = 45°F ... ?180 = ?2,再说一次,平 方是针对整个符号的操作。 接着RMSprop会这样更新参数值,?: = ? − ? ?? ???,?: = ? − ? ?? ???, 12 ADAM Adam优化算法基本上就是将Momentum和RMSprop结合在一起 最后更新权重,所以?更新后是?: = ? − ???? corrected ??? corrected+? (如果你只是用 Momentum,使用0 码力 | 31 页 | 2.03 MB | 1 年前3 机器学习课程-温州大学-06深度学习-优化算法1 2023年04月 深度学习-优化算法 黄海广 副教授 2 01 小批量梯度下降 本章目录 02 优化算法 03 超参数调整和BatchNorm 04 Softmax 3 01 小批量梯度下降 02 优化算法 03 超参数调整和BatchNorm 04 Softmax 1.小批量梯度下降 4 小批量梯度下降 小批量梯度下降(Mini-Batch ?(?) ?? (?) (同步更新?? ,(j=0,1,...,n )) 5 小批量梯度下降 6 01 小批量梯度下降 02 优化算法 03 超参数调整和BatchNorm 04 Softmax 2.优化算法 7 伦敦温度的例子 days temperature ?1 = 40°F ?2 = 49°F ?3 = 45°F ... ?180 = ?2,再说一次,平 方是针对整个符号的操作。 接着RMSprop会这样更新参数值,?: = ? − ? ?? ???,?: = ? − ? ?? ???, 12 ADAM Adam优化算法基本上就是将Momentum和RMSprop结合在一起 最后更新权重,所以?更新后是?: = ? − ???? corrected ??? corrected+? (如果你只是用 Momentum,使用0 码力 | 31 页 | 2.03 MB | 1 年前3
 KubeCon2020/大型Kubernetes集群的资源编排优化0 码力 | 27 页 | 3.91 MB | 1 年前3 KubeCon2020/大型Kubernetes集群的资源编排优化0 码力 | 27 页 | 3.91 MB | 1 年前3
 全栈服务网格 - Aeraki 助你在
Istio 服务网格中管理任何七层流量服务网格中管理任何七层流量 赵化冰@腾讯云 #IstioCon Huabing Zhao Software Engineer @ Tencent Cloud https://zhaohuabing.com @zhaohuabing @zhaohuabing @zhaohuabing @zhaohuabing #IstioCon Agenda ❏ Service Mesh 中的七层流量管理能力 中的七层流量管理能力 ❏ 几种扩展 Istio 流量管理能力的方法 ❏ Aeraki - 在 Isito 服务网格中管理所有七层流量 ❏ Demo - Dubbo Traffic Management ❏ MetaProtocol - Service Mesh 通用七层协议框架 #IstioCon Protocols in a Typical Microservice Application Service Security, Observability) #IstioCon What Do We Expect From a Service Mesh? 为了将基础设施的运维管理从应用代码中剥离,我们需要七层的流量管 理能力: ● Routing based on layer-7 header ○ Load balancing at requet level ○ HTTP host/header/url/method0 码力 | 29 页 | 2.11 MB | 1 年前3 全栈服务网格 - Aeraki 助你在
Istio 服务网格中管理任何七层流量服务网格中管理任何七层流量 赵化冰@腾讯云 #IstioCon Huabing Zhao Software Engineer @ Tencent Cloud https://zhaohuabing.com @zhaohuabing @zhaohuabing @zhaohuabing @zhaohuabing #IstioCon Agenda ❏ Service Mesh 中的七层流量管理能力 中的七层流量管理能力 ❏ 几种扩展 Istio 流量管理能力的方法 ❏ Aeraki - 在 Isito 服务网格中管理所有七层流量 ❏ Demo - Dubbo Traffic Management ❏ MetaProtocol - Service Mesh 通用七层协议框架 #IstioCon Protocols in a Typical Microservice Application Service Security, Observability) #IstioCon What Do We Expect From a Service Mesh? 为了将基础设施的运维管理从应用代码中剥离,我们需要七层的流量管 理能力: ● Routing based on layer-7 header ○ Load balancing at requet level ○ HTTP host/header/url/method0 码力 | 29 页 | 2.11 MB | 1 年前3
 通过Oracle 并行处理集成 Hadoop 数据并行处理集成 Hadoop 数据 1 Oracle 白皮书 — 通过 Oracle 并行处理集成 Hadoop 数据 引言 许多垂直行业都在关注文件系统中庞大的数据。这些数据中通常包含大量无关的 明 明细信息,以及部分可用于趋势分析或丰富其他数据的精华信息。尽管这些数据 存储在数据库之外,但一些客户仍然希望将其与数据库中的数据整合在一起以提 取对业务用户有价值的信息。 本文详细介绍了如何从 Oracle 数据库访问存储在 Hadoop 集群里的数据。请注 意,本文选择了 Hadoop 和 HDFS 作为示例,但这里的策略同样适用于其他分 布式存储机制。本文中介绍了各种访问方法,还通过一个具体示例说明了其中一 通过 Oracle 并行处理集成 Hadoop 数据 外部 Hadoop 数据的访问方法 要从 Oracle 数据库里访问某个文件系统中的外部文件或外部数据,最简单的方法莫过于使用 外部表。请参阅这里了解外部表。 外部表以表的形式展示存储在文件系统中的数据,并且可在 SQL 查询中完全透明地使用。 因此,可以考虑用外部表从0 码力 | 21 页 | 1.03 MB | 1 年前3 通过Oracle 并行处理集成 Hadoop 数据并行处理集成 Hadoop 数据 1 Oracle 白皮书 — 通过 Oracle 并行处理集成 Hadoop 数据 引言 许多垂直行业都在关注文件系统中庞大的数据。这些数据中通常包含大量无关的 明 明细信息,以及部分可用于趋势分析或丰富其他数据的精华信息。尽管这些数据 存储在数据库之外,但一些客户仍然希望将其与数据库中的数据整合在一起以提 取对业务用户有价值的信息。 本文详细介绍了如何从 Oracle 数据库访问存储在 Hadoop 集群里的数据。请注 意,本文选择了 Hadoop 和 HDFS 作为示例,但这里的策略同样适用于其他分 布式存储机制。本文中介绍了各种访问方法,还通过一个具体示例说明了其中一 通过 Oracle 并行处理集成 Hadoop 数据 外部 Hadoop 数据的访问方法 要从 Oracle 数据库里访问某个文件系统中的外部文件或外部数据,最简单的方法莫过于使用 外部表。请参阅这里了解外部表。 外部表以表的形式展示存储在文件系统中的数据,并且可在 SQL 查询中完全透明地使用。 因此,可以考虑用外部表从0 码力 | 21 页 | 1.03 MB | 1 年前3
 大数据时代的Intel之Hadoop大数据时代的Intel乊Hadoop 系统方案架构师:朱海峰 英特尔®中国于计算创新中心 2013.4 北京 法律声明 本文所提供乊信息均不英特尔® 产品相关。本文丌代表英特尔公司戒其它机构向仸何人明确戒隐含地授予仸何知识产权。除相关产品的英特尔销售条款不条件中列明乊担保条件以外,英特 尔公司丌对销售和/戒使用英特尔产品做出其它仸何明确戒隐含的担保,包括对适用亍特定用途、适销 可随时更改,恕丌另行通知。 版权所有 © 2012 英特尔公司。所有权保留。 提纲 • 大数据时代的新挑戓 • 大数据时代的Intel • 关注产业应用,产研相亏促迚 从文明诞生到2003年,人类文明产生了 5EB的数据; 而今天,我们每两天产生5EB的数据。 Eric Schmidt 0 20,000 40,000 60,000 80,000 2007 2008 2009 2010 2011 2012 2013 2014 2015 Exponential Growth 内容仓库– 海量/非结构化 传统非结构化数据 传统结构化数据 企业托管服务中的数据 Linear Growth Source: IDC, 2011 Worldwide Enterprise Storage Systems 2011–2015 Forecast0 码力 | 36 页 | 2.50 MB | 1 年前3 大数据时代的Intel之Hadoop大数据时代的Intel乊Hadoop 系统方案架构师:朱海峰 英特尔®中国于计算创新中心 2013.4 北京 法律声明 本文所提供乊信息均不英特尔® 产品相关。本文丌代表英特尔公司戒其它机构向仸何人明确戒隐含地授予仸何知识产权。除相关产品的英特尔销售条款不条件中列明乊担保条件以外,英特 尔公司丌对销售和/戒使用英特尔产品做出其它仸何明确戒隐含的担保,包括对适用亍特定用途、适销 可随时更改,恕丌另行通知。 版权所有 © 2012 英特尔公司。所有权保留。 提纲 • 大数据时代的新挑戓 • 大数据时代的Intel • 关注产业应用,产研相亏促迚 从文明诞生到2003年,人类文明产生了 5EB的数据; 而今天,我们每两天产生5EB的数据。 Eric Schmidt 0 20,000 40,000 60,000 80,000 2007 2008 2009 2010 2011 2012 2013 2014 2015 Exponential Growth 内容仓库– 海量/非结构化 传统非结构化数据 传统结构化数据 企业托管服务中的数据 Linear Growth Source: IDC, 2011 Worldwide Enterprise Storage Systems 2011–2015 Forecast0 码力 | 36 页 | 2.50 MB | 1 年前3
 TensorFlow on Yarn:深度学习遇上大数据深度学习 + 大数据 TensorFlow on Yarn 李远策 2017年4月17日 内容大纲 Ø TensorFlow使用现状及痛点� Ø TensorFlow on Yarn设计� Ø TensorFlow on Yarn技术细节揭秘� Ø 深度学习平台演进及SparkFlow介绍� 背景 坐标:360-系统部-⼤数据团队� 专业:Yarn、Spark、MR、HDFS 专业:Yarn、Spark、MR、HDFS …� 挑战:深度学习空前⽕爆,各种深度学习框架层出不穷,业务部门 拥抱新兴技术。平台怎么应对?� 机遇:Maybe 深度学习 + ⼤数据 � � TensorFlow使用现状及痛点 场景(1)� 场景(2)� TensorFlow使用现状及痛点 !.train.ClusterSpec({ “worker”: [ “worker0.example ⼿动拉取训练模型� TensorFlow使用现状及痛点 • 多⼈多服务器使用混乱,计算资源如何划分?� • 没有GPUs集群资源管理和调度(内存、CPU、GPU、 端⼝),集群资源负载不均� • 训练数据⼿动分发,训练模型⼿动保存� • 进程遗留问题,需要⼿动杀死� • 缺乏作业统⼀管理,不便对作业运⾏状态跟踪� • 日志查看不⽅便� � 总结:� TensorFlow使用现状及痛点 •0 码力 | 32 页 | 4.06 MB | 1 年前3 TensorFlow on Yarn:深度学习遇上大数据深度学习 + 大数据 TensorFlow on Yarn 李远策 2017年4月17日 内容大纲 Ø TensorFlow使用现状及痛点� Ø TensorFlow on Yarn设计� Ø TensorFlow on Yarn技术细节揭秘� Ø 深度学习平台演进及SparkFlow介绍� 背景 坐标:360-系统部-⼤数据团队� 专业:Yarn、Spark、MR、HDFS 专业:Yarn、Spark、MR、HDFS …� 挑战:深度学习空前⽕爆,各种深度学习框架层出不穷,业务部门 拥抱新兴技术。平台怎么应对?� 机遇:Maybe 深度学习 + ⼤数据 � � TensorFlow使用现状及痛点 场景(1)� 场景(2)� TensorFlow使用现状及痛点 !.train.ClusterSpec({ “worker”: [ “worker0.example ⼿动拉取训练模型� TensorFlow使用现状及痛点 • 多⼈多服务器使用混乱,计算资源如何划分?� • 没有GPUs集群资源管理和调度(内存、CPU、GPU、 端⼝),集群资源负载不均� • 训练数据⼿动分发,训练模型⼿动保存� • 进程遗留问题,需要⼿动杀死� • 缺乏作业统⼀管理,不便对作业运⾏状态跟踪� • 日志查看不⽅便� � 总结:� TensorFlow使用现状及痛点 •0 码力 | 32 页 | 4.06 MB | 1 年前3
共 329 条
- 1
- 2
- 3
- 4
- 5
- 6
- 33














 
 