 使⽤Apache SkyWalking APM 监控 Apache ServiceComb使⽤Apache SkyWalking APM 监控 Apache ServiceComb 吴晟 Sheng Wu Huawei DevCloud http://skywalking.io Twitter @AsfSkyWalking 个⼈介绍 GitHub: https://github.com/wu-sheng Personal Homepage: https://wu-sheng0 码力 | 22 页 | 2.85 MB | 1 年前3 使⽤Apache SkyWalking APM 监控 Apache ServiceComb使⽤Apache SkyWalking APM 监控 Apache ServiceComb 吴晟 Sheng Wu Huawei DevCloud http://skywalking.io Twitter @AsfSkyWalking 个⼈介绍 GitHub: https://github.com/wu-sheng Personal Homepage: https://wu-sheng0 码力 | 22 页 | 2.85 MB | 1 年前3
 基于open-falcon的平安云监控基于open-falcon的 平安云监控 目录 Ø 团队介绍 Ø 背景 Ø 系统定位 Ø argus是什么 Ø 为什么选用Go Ø argus的前身 Ø argus的现状 Ø argus的未来 团队介绍 Ø 平安云IAAS团队 Ø 负责平安集团IAAS平台建设 Ø 为平安集团内部其他子公司服务 Ø 打造对外的金融云服务 目录 Ø 团队介绍 Ø 背景 Ø 系统定位 背景 Ø 应对云主机快速增长 Ø 打造用户自助服务的监控平台 Ø 适应内部的三级网络架构 背景 云管区 公共服务区 可用区 目录 Ø 团队介绍 Ø 背景 Ø 系统定位 Ø argus是什么 Ø 为什么选用Go Ø argus的前身 Ø argus的现状 Ø argus的未来 系统定位 Ø 保证基础监控,提供监控通道 Ø 要求高可用、高可扩展 Ø 分离用户、平台管理员 分离用户、平台管理员 角色 Ø 建设用户自助平台(看性能、配告警、收告警) Ø 保证告警覆盖率,按类型初始化通用告警策略 Ø 兼顾通用的和个性的监控要求 目录 Ø 团队介绍 Ø 背景 Ø 系统定位 Ø argus是什么 Ø 为什么选用Go Ø argus的前身 Ø argus的现状 Ø argus的未来 argus是什么 Ø 是平安云监控系统 Ø 希腊神话里的百眼巨人 Ø 基平o0 码力 | 30 页 | 10.40 MB | 1 年前3 基于open-falcon的平安云监控基于open-falcon的 平安云监控 目录 Ø 团队介绍 Ø 背景 Ø 系统定位 Ø argus是什么 Ø 为什么选用Go Ø argus的前身 Ø argus的现状 Ø argus的未来 团队介绍 Ø 平安云IAAS团队 Ø 负责平安集团IAAS平台建设 Ø 为平安集团内部其他子公司服务 Ø 打造对外的金融云服务 目录 Ø 团队介绍 Ø 背景 Ø 系统定位 背景 Ø 应对云主机快速增长 Ø 打造用户自助服务的监控平台 Ø 适应内部的三级网络架构 背景 云管区 公共服务区 可用区 目录 Ø 团队介绍 Ø 背景 Ø 系统定位 Ø argus是什么 Ø 为什么选用Go Ø argus的前身 Ø argus的现状 Ø argus的未来 系统定位 Ø 保证基础监控,提供监控通道 Ø 要求高可用、高可扩展 Ø 分离用户、平台管理员 分离用户、平台管理员 角色 Ø 建设用户自助平台(看性能、配告警、收告警) Ø 保证告警覆盖率,按类型初始化通用告警策略 Ø 兼顾通用的和个性的监控要求 目录 Ø 团队介绍 Ø 背景 Ø 系统定位 Ø argus是什么 Ø 为什么选用Go Ø argus的前身 Ø argus的现状 Ø argus的未来 argus是什么 Ø 是平安云监控系统 Ø 希腊神话里的百眼巨人 Ø 基平o0 码力 | 30 页 | 10.40 MB | 1 年前3
 Go性能优化概览-曹春晖业务性能优化概览 By Xargin 《Go 语⾔⾼级编程》合著者 Go contributor ⽬ 录 优化的前置知识 01 ⽣产环境的优化 02 Continuous profiling 03 优化的前置知识 第⼀部分 Latency numbers every programmer should know https://colin-scott.github.io/p 5c36d1b381cda9e7/ prometheus/go_collector.go#L45 基本套路 1. 排除外部问题,例如依赖的上游服务(包括 DB、redis、MQ)延迟 过⾼,在监控系统中查看 2. CPU 占⽤过⾼ -> 看 CPU profile -> 优化占⽤ CPU 较多的部分逻 辑 3. 内存占⽤过⾼ -> 看 prometheus,内存 RSS 是多少,goroutine go#L930 内存占⽤过⾼-堆分配导致内存过⾼ https://github.com/golang/go/pull/42036#issuecomment-715046540 怎么样说服官⽅接受性能优化的 PR 内存占⽤过⾼-goroutine 数量太多导致内存占⽤⾼ 这些内存的构成部分: 1. Goroutine 栈占⽤的内存(难优化,⼀条 tcp 连接⾄少对应⼀个 goroutine)0 码力 | 40 页 | 8.69 MB | 1 年前3 Go性能优化概览-曹春晖业务性能优化概览 By Xargin 《Go 语⾔⾼级编程》合著者 Go contributor ⽬ 录 优化的前置知识 01 ⽣产环境的优化 02 Continuous profiling 03 优化的前置知识 第⼀部分 Latency numbers every programmer should know https://colin-scott.github.io/p 5c36d1b381cda9e7/ prometheus/go_collector.go#L45 基本套路 1. 排除外部问题,例如依赖的上游服务(包括 DB、redis、MQ)延迟 过⾼,在监控系统中查看 2. CPU 占⽤过⾼ -> 看 CPU profile -> 优化占⽤ CPU 较多的部分逻 辑 3. 内存占⽤过⾼ -> 看 prometheus,内存 RSS 是多少,goroutine go#L930 内存占⽤过⾼-堆分配导致内存过⾼ https://github.com/golang/go/pull/42036#issuecomment-715046540 怎么样说服官⽅接受性能优化的 PR 内存占⽤过⾼-goroutine 数量太多导致内存占⽤⾼ 这些内存的构成部分: 1. Goroutine 栈占⽤的内存(难优化,⼀条 tcp 连接⾄少对应⼀个 goroutine)0 码力 | 40 页 | 8.69 MB | 1 年前3
 4 Python机器学习性能优化Python机器学习性能优化 以BERT服务为例例,从1到1000 刘欣 ⽬目录 CONTENTS 1. 优化的哲学 2. 了解你的资源 3. 定位性能瓶颈 4. 动⼿优化 1. 优化的哲学 "There ain't no such thing as a free lunch" Ahmdal’s Law • 系统整体的优化,取决于热点部分的占⽐比和该部分的加速程度 No Free Flask Production Server • gunicorn 多进程解决多核利利⽤用率问题 • gevent 协程替代多线程⽹网络模型 • 更更⾼高效的序列列化lib 3 定位性能瓶颈 Profile before Optimizing Python Profilers • time.time() • cProfile • line profiler • pyflame 放个截图 cProfile • 倒序打印 & graph pyflame • 插桩 or 采样 • 放个flamegraph • 开源地址 wrk • 制造压⼒力力 • 挖掘整体性能瓶颈 • 实现⾮非常精妙的压⼒力力⼯工具,强烈烈安利利(要不不要写个py binding) 4 动⼿优化 多线程服务器的问题 • 每个请求单独进GPU,利利⽤用率不不⾼高 • ⼤大量量请求并⾏行行,CUDA会爆0 码力 | 38 页 | 2.25 MB | 1 年前3 4 Python机器学习性能优化Python机器学习性能优化 以BERT服务为例例,从1到1000 刘欣 ⽬目录 CONTENTS 1. 优化的哲学 2. 了解你的资源 3. 定位性能瓶颈 4. 动⼿优化 1. 优化的哲学 "There ain't no such thing as a free lunch" Ahmdal’s Law • 系统整体的优化,取决于热点部分的占⽐比和该部分的加速程度 No Free Flask Production Server • gunicorn 多进程解决多核利利⽤用率问题 • gevent 协程替代多线程⽹网络模型 • 更更⾼高效的序列列化lib 3 定位性能瓶颈 Profile before Optimizing Python Profilers • time.time() • cProfile • line profiler • pyflame 放个截图 cProfile • 倒序打印 & graph pyflame • 插桩 or 采样 • 放个flamegraph • 开源地址 wrk • 制造压⼒力力 • 挖掘整体性能瓶颈 • 实现⾮非常精妙的压⼒力力⼯工具,强烈烈安利利(要不不要写个py binding) 4 动⼿优化 多线程服务器的问题 • 每个请求单独进GPU,利利⽤用率不不⾼高 • ⼤大量量请求并⾏行行,CUDA会爆0 码力 | 38 页 | 2.25 MB | 1 年前3
 C++高性能并行编程与优化 -  课件 - 性能优化之无分支编程 Branchless Programming性能优化 之 无分支编程 Branchless Programming by 彭于斌( @archibate ) 两种代码写法:分支 vs 三目运算符 两种使用方式:排序 vs 不排序 测试结果(均为 gcc -O3 ) 测试结果可视化 图表比较:分支 vs 无分支 分支 无分支 0 0.01 0.02 0.03 耗时(越低越好) 乱序 有序 • 传统的分支方法实现的 uppercase ,对于 排序过的数据明显比乱序时高效。 • 无分支的方法对于乱序和有序的数据一样 高效,性能吊打了传统的分支方法。 • 对于传统分支的做法,为什么排序了的更 高效?既然无分支更高效,我要怎样优化 才能让我的程序变成无分支的呢?那就来 看本期性能优化专题课吧! 分支预测成败对性能的影响 排序为什么对有分支的版本影响那么大 为什么需要流水线 • 为了高效, CPU 的内部其实是一个流水 、 90% 、 99% 直到有一次, 突然出现了一次分支 B 成功的案例, CPU 瞬间被打脸!不得不浪费 99% 已经填满 A 数 据的流水线清空,重启整个流水线,这就是分支预测失败,他是导致分支性能低下的罪魁祸 首。不过被打了一次脸的 CPU 还不敢相信,觉得这可能只是碰巧,下一次还是会执行分 支 A 的吧,所以他只是把分支 A 的比例下调到 80% ,直到第二次又被打脸,下调到最初 的起点 50%……0 码力 | 47 页 | 8.45 MB | 1 年前3 C++高性能并行编程与优化 -  课件 - 性能优化之无分支编程 Branchless Programming性能优化 之 无分支编程 Branchless Programming by 彭于斌( @archibate ) 两种代码写法:分支 vs 三目运算符 两种使用方式:排序 vs 不排序 测试结果(均为 gcc -O3 ) 测试结果可视化 图表比较:分支 vs 无分支 分支 无分支 0 0.01 0.02 0.03 耗时(越低越好) 乱序 有序 • 传统的分支方法实现的 uppercase ,对于 排序过的数据明显比乱序时高效。 • 无分支的方法对于乱序和有序的数据一样 高效,性能吊打了传统的分支方法。 • 对于传统分支的做法,为什么排序了的更 高效?既然无分支更高效,我要怎样优化 才能让我的程序变成无分支的呢?那就来 看本期性能优化专题课吧! 分支预测成败对性能的影响 排序为什么对有分支的版本影响那么大 为什么需要流水线 • 为了高效, CPU 的内部其实是一个流水 、 90% 、 99% 直到有一次, 突然出现了一次分支 B 成功的案例, CPU 瞬间被打脸!不得不浪费 99% 已经填满 A 数 据的流水线清空,重启整个流水线,这就是分支预测失败,他是导致分支性能低下的罪魁祸 首。不过被打了一次脸的 CPU 还不敢相信,觉得这可能只是碰巧,下一次还是会执行分 支 A 的吧,所以他只是把分支 A 的比例下调到 80% ,直到第二次又被打脸,下调到最初 的起点 50%……0 码力 | 47 页 | 8.45 MB | 1 年前3
 1.每秒百万数据点 Go 应用监控系统演进每秒百万数据点 Go 应用监控系统演进 张平 AfterShip 高级 SRE 关于 AfterShip 拥抱云原生和开源系统 目 录 监控架构概览 01 如何监控 Go 应用? 02 Metrics 系统架构演进 03 Why VictoriaMetrics so good? 04 总结与展望 05 监控架构概览 第一部分 监控系统架构概览 -- 数据源 监控系统架构概览 -- -- 告警配置 监控系统架构概览 -- 告警通道 如何监控 Go 应用? 第二部分 基于 Prometheus Go 应用监控接入流程 确定指标 为应用埋点 部署应用 配置服务发现 监控展示 指标类型 ● Go 运行时指标 ○ Goroutine 数量 ● 应用层指标 ○ infra_http_request_total ● 业务指标 ○ 总 Tracking 查询量 ○ 存储空间减少了 3 倍 25K+ 1Mil 60Mil+ 业务指标数量 每秒写入数据点 Active Time Series 2023 年底指标数据 VictoriaMetrics 收益 ● 高性能,看板加载时间从 120s 降低到 10s ● 兼容 Prometheus,可以无缝迁移 ● 成本更低,只需要 thanos 的 50% 资源 ● 扩展性强,所有组件支持水平扩容 2023 年底架构0 码力 | 42 页 | 2.32 MB | 1 年前3 1.每秒百万数据点 Go 应用监控系统演进每秒百万数据点 Go 应用监控系统演进 张平 AfterShip 高级 SRE 关于 AfterShip 拥抱云原生和开源系统 目 录 监控架构概览 01 如何监控 Go 应用? 02 Metrics 系统架构演进 03 Why VictoriaMetrics so good? 04 总结与展望 05 监控架构概览 第一部分 监控系统架构概览 -- 数据源 监控系统架构概览 -- -- 告警配置 监控系统架构概览 -- 告警通道 如何监控 Go 应用? 第二部分 基于 Prometheus Go 应用监控接入流程 确定指标 为应用埋点 部署应用 配置服务发现 监控展示 指标类型 ● Go 运行时指标 ○ Goroutine 数量 ● 应用层指标 ○ infra_http_request_total ● 业务指标 ○ 总 Tracking 查询量 ○ 存储空间减少了 3 倍 25K+ 1Mil 60Mil+ 业务指标数量 每秒写入数据点 Active Time Series 2023 年底指标数据 VictoriaMetrics 收益 ● 高性能,看板加载时间从 120s 降低到 10s ● 兼容 Prometheus,可以无缝迁移 ● 成本更低,只需要 thanos 的 50% 资源 ● 扩展性强,所有组件支持水平扩容 2023 年底架构0 码力 | 42 页 | 2.32 MB | 1 年前3
 对 Go 程序进行可靠的性能测试对 Go 程序进行可靠的性能测试 Changkun Ou https://changkun.de/s/gobench/ Go 夜读系列 |talkgo.org|Talk Go|第 83 期 March 26, 2020 # Go 1.13 / 1.14 2020 © Changkun Ou · Go 夜读 · 对 Go 程序进行可靠的性能测试 主要内容 ● 可靠的测试环境 ● benchstat 对代码块进行性能调优 ○ 例2: Benchmark 的正确性分析 ○ 例3: 其他的影响因素 ● 假设检验的原理 ● 局限与应对措施 ● 总结 2020 © Changkun Ou · Go 夜读 · 对 Go 程序进行可靠的性能测试 教科书式的性能测试方法论 3 在《Software Testing: Principles and Practices》一书中归纳的性能测试方法论: 搜集需求 2. 编写测试用例 3. 自动化性能测试用例 4. 执行性能测试用例 5. 分析性能测试结果 6. 性能调优 7. 性能基准测试(Performance Benchmarking) 8. 向客户推荐合适的配置 可靠的测试环境 2020 © Changkun Ou · Go 夜读 · 对 Go 程序进行可靠的性能测试 什么是可靠的性能基准测试环境 5 影响测试环境的软硬件因素0 码力 | 37 页 | 1.23 MB | 1 年前3 对 Go 程序进行可靠的性能测试对 Go 程序进行可靠的性能测试 Changkun Ou https://changkun.de/s/gobench/ Go 夜读系列 |talkgo.org|Talk Go|第 83 期 March 26, 2020 # Go 1.13 / 1.14 2020 © Changkun Ou · Go 夜读 · 对 Go 程序进行可靠的性能测试 主要内容 ● 可靠的测试环境 ● benchstat 对代码块进行性能调优 ○ 例2: Benchmark 的正确性分析 ○ 例3: 其他的影响因素 ● 假设检验的原理 ● 局限与应对措施 ● 总结 2020 © Changkun Ou · Go 夜读 · 对 Go 程序进行可靠的性能测试 教科书式的性能测试方法论 3 在《Software Testing: Principles and Practices》一书中归纳的性能测试方法论: 搜集需求 2. 编写测试用例 3. 自动化性能测试用例 4. 执行性能测试用例 5. 分析性能测试结果 6. 性能调优 7. 性能基准测试(Performance Benchmarking) 8. 向客户推荐合适的配置 可靠的测试环境 2020 © Changkun Ou · Go 夜读 · 对 Go 程序进行可靠的性能测试 什么是可靠的性能基准测试环境 5 影响测试环境的软硬件因素0 码力 | 37 页 | 1.23 MB | 1 年前3
 2.7 Golang与高性能DSP竞价系统专业DSP解决⽅方案供应商 Golang与⾼高性能DSP竞价系统 By @QLeelulu 专业DSP解决⽅方案 © ⼲⼴广州舜⻜飞信息科技有限公司 All Right ReservedAll Right Reserved • RTB: Real-time Bidding,实时竞价,允许⼲⼴广告买家根据 活动⺫⽬目标、⺫⽬目标⼈人群以及费⽤用⻔门槛等因素对每⼀一个⼲⼴广告 及每次⼲⼴广告展⽰示的费⽤用进⾏行竞价。 http包的HelloWorld性能测试 为什么选择Golang Via: http://www.cnblogs.com/QLeelulu/archive/2012/08/12/2635261.html 专业DSP解决⽅方案 © ⼲⼴广州舜⻜飞信息科技有限公司 All Right ReservedAll Right Reserved • ⾼高性能、天⽣生并发⽀支持 • 性能敏感的模块可以直接使⽤用C编写(当时是这么认为的) 性能敏感的模块可以直接使⽤用C编写(当时是这么认为的) • 编译为本地机器码,部署⽅方便 • 快速上⼿手,学习成本低 • 标准库基本够⽤用 • 带GC(当时不了解GC的性能问题) • ⾃自带单元测试、性能测试、性能分析⼯工具 • 开发效率不低 为什么选择Golang 专业DSP解决⽅方案 © ⼲⼴广州舜⻜飞信息科技有限公司 All Right ReservedAll Right Reserved0 码力 | 51 页 | 5.09 MB | 1 年前3 2.7 Golang与高性能DSP竞价系统专业DSP解决⽅方案供应商 Golang与⾼高性能DSP竞价系统 By @QLeelulu 专业DSP解决⽅方案 © ⼲⼴广州舜⻜飞信息科技有限公司 All Right ReservedAll Right Reserved • RTB: Real-time Bidding,实时竞价,允许⼲⼴广告买家根据 活动⺫⽬目标、⺫⽬目标⼈人群以及费⽤用⻔门槛等因素对每⼀一个⼲⼴广告 及每次⼲⼴广告展⽰示的费⽤用进⾏行竞价。 http包的HelloWorld性能测试 为什么选择Golang Via: http://www.cnblogs.com/QLeelulu/archive/2012/08/12/2635261.html 专业DSP解决⽅方案 © ⼲⼴广州舜⻜飞信息科技有限公司 All Right ReservedAll Right Reserved • ⾼高性能、天⽣生并发⽀支持 • 性能敏感的模块可以直接使⽤用C编写(当时是这么认为的) 性能敏感的模块可以直接使⽤用C编写(当时是这么认为的) • 编译为本地机器码,部署⽅方便 • 快速上⼿手,学习成本低 • 标准库基本够⽤用 • 带GC(当时不了解GC的性能问题) • ⾃自带单元测试、性能测试、性能分析⼯工具 • 开发效率不低 为什么选择Golang 专业DSP解决⽅方案 © ⼲⼴广州舜⻜飞信息科技有限公司 All Right ReservedAll Right Reserved0 码力 | 51 页 | 5.09 MB | 1 年前3
 IPC性能极致优化方案-RPAL落地实践IPC性能极致优化方案-RPAL落地实践 谢正尧 字节跳动 研发工程师 目 录 方案诞生的背景 01 全进程地址空间共享与保护 02 用户态进程切换 03 高效的Go Event Poller 04 RPC框架Kitex集成 05 性能收益与业务展望 06 方案诞生的背景 第一部分 方案诞生的背景 几种常见的同机通信场景: 1. 微服务合并部署(亲和性部署、sidecar 常见的本地通信方案:回环 IP、UDS、共享内存IPC 方案诞生的背景 以性能较优的 IPC 方案 share memory ipc 为例分析性能瓶颈: 注:方案 github 地址:https://github.com/cloudwego/shmipc-go 方案诞生的背景 方案诞生的背景 IPC 的性能瓶颈有哪些: 1. 系统特权级切换; 2. 异步线程唤醒/休眠(事件通知); 异步线程唤醒/休眠(事件通知); 3. 数据拷贝(序列化/反序列化); 方案诞生的背景 能不能把库函数调用的高性能优势做到 IPC 里面,降低进程间的事件通知和数据拷贝开销? 以go-go微服务 RPC 通信场景为例,该问题可以抽象为,如何高效地在两个 go runtime 间进行函数调用? 方案诞生的背景 基于以上问题,我们最终引入了 RPAL(Run Process As Library) 方案,基于跨进程虚拟地址0 码力 | 39 页 | 2.98 MB | 1 年前3 IPC性能极致优化方案-RPAL落地实践IPC性能极致优化方案-RPAL落地实践 谢正尧 字节跳动 研发工程师 目 录 方案诞生的背景 01 全进程地址空间共享与保护 02 用户态进程切换 03 高效的Go Event Poller 04 RPC框架Kitex集成 05 性能收益与业务展望 06 方案诞生的背景 第一部分 方案诞生的背景 几种常见的同机通信场景: 1. 微服务合并部署(亲和性部署、sidecar 常见的本地通信方案:回环 IP、UDS、共享内存IPC 方案诞生的背景 以性能较优的 IPC 方案 share memory ipc 为例分析性能瓶颈: 注:方案 github 地址:https://github.com/cloudwego/shmipc-go 方案诞生的背景 方案诞生的背景 IPC 的性能瓶颈有哪些: 1. 系统特权级切换; 2. 异步线程唤醒/休眠(事件通知); 异步线程唤醒/休眠(事件通知); 3. 数据拷贝(序列化/反序列化); 方案诞生的背景 能不能把库函数调用的高性能优势做到 IPC 里面,降低进程间的事件通知和数据拷贝开销? 以go-go微服务 RPC 通信场景为例,该问题可以抽象为,如何高效地在两个 go runtime 间进行函数调用? 方案诞生的背景 基于以上问题,我们最终引入了 RPAL(Run Process As Library) 方案,基于跨进程虚拟地址0 码力 | 39 页 | 2.98 MB | 1 年前3
 高性能高可用机票实时搜索系统⾼性能⾼可⽤机票实时搜索系统 去哪⼉⺴ 梁启康 议题 系统诉求 海海量量数据 设计思路路 搜索框架 报价引擎 待解问题 系统诉求 • 全⽹网价最低 • 航线报价最全 • 实时性最好 • 产品最丰富 • 预定最流畅 ⾯面临问题 航班舱位时刻变动 供应商规则调整密集 航司政策各有不不同 供应商的office权限不不⼀一致 运价规则变化繁多 GDS数据成本不不菲 • Date • Integer • Set • byte, byte[] • short, short[] • int, int[] • obj pool 报价引擎 — 性能优化 • 异步、并⾏行行、⽆无锁化 • 剪枝 • 空间换时间 • 缩短对象驻留留内存时间,减少gc次数,优化单机吞吐 • 数据交换采⽤用protobuf + gzip处理理 •0 码力 | 26 页 | 1.94 MB | 1 年前3 高性能高可用机票实时搜索系统⾼性能⾼可⽤机票实时搜索系统 去哪⼉⺴ 梁启康 议题 系统诉求 海海量量数据 设计思路路 搜索框架 报价引擎 待解问题 系统诉求 • 全⽹网价最低 • 航线报价最全 • 实时性最好 • 产品最丰富 • 预定最流畅 ⾯面临问题 航班舱位时刻变动 供应商规则调整密集 航司政策各有不不同 供应商的office权限不不⼀一致 运价规则变化繁多 GDS数据成本不不菲 • Date • Integer • Set • byte, byte[] • short, short[] • int, int[] • obj pool 报价引擎 — 性能优化 • 异步、并⾏行行、⽆无锁化 • 剪枝 • 空间换时间 • 缩短对象驻留留内存时间,减少gc次数,优化单机吞吐 • 数据交换采⽤用protobuf + gzip处理理 •0 码力 | 26 页 | 1.94 MB | 1 年前3
共 465 条
- 1
- 2
- 3
- 4
- 5
- 6
- 47














 
 