积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(1145)综合其他(413)Python(384)Weblate(294)云计算&大数据(283)数据库(204)Java(156)Spring(145)C++(121)系统运维(112)

语言

全部英语(1582)中文(简体)(461)中文(繁体)(22)日语(18)德语(15)法语(15)韩语(15)西班牙语(14)俄语(14)英语(9)

格式

全部PDF文档 PDF(1606)其他文档 其他(510)TXT文档 TXT(55)PPT文档 PPT(5)DOC文档 DOC(3)
 
本次搜索耗时 0.581 秒,为您找到相关结果约 1000 个.
  • 全部
  • 后端开发
  • 综合其他
  • Python
  • Weblate
  • 云计算&大数据
  • 数据库
  • Java
  • Spring
  • C++
  • 系统运维
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 日语
  • 德语
  • 法语
  • 韩语
  • 西班牙语
  • 俄语
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • TXT文档 TXT
  • PPT文档 PPT
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Boosting Software Efficiency

    0 码力 | 180 页 | 1.65 MB | 6 月前
    3
  • pdf文档 Balancing Efficiency and Flexibility: Cost of Abstractions in Embedded Systems

    0 码力 | 75 页 | 2.12 MB | 6 月前
    3
  • pdf文档 HUAWEI CLOUD Microservice Tool Improves Development Efficiency

    HUAWEI CLOUD Microservice Tool Improves Development Efficiency Department: Application Platform Service Author: Wang Qijun Date: 2019-09-20 Security Level: Contents 1. Tool for Splitting Monolithic Process-level Overall availability Low High Continuous evolution Difficult Easy Communication efficiency Low High Technology stack selection Restricted Flexible Scalable Restricted Flexible Reusability verification Tool for Splitting Monolithic Applications into Microservices Improves Development Efficiency Supported processes Methodology • ThoughtWorks 5 Steps and 1 Phase • DDD aggregation • Event
    0 码力 | 14 页 | 795.42 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    bring significant efficiency gains during the training phase, which is the focus of this chapter. We start this chapter with an introduction to sample efficiency and label efficiency, the two criteria Our journey of learning techniques also continues in the later chapters. Learning Techniques and Efficiency Data Augmentation and Distillation are widely different learning techniques. While data augmentation breadth as efficiency? To answer this question, let’s break down the two prominent ways to benchmark the model in the training phase namely sample efficiency and label efficiency. Sample Efficiency Sample
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    quality with a small number of labels. As we described in chapter 3’s ‘Learning Techniques and Efficiency’ section, labeling of training data is an expensive undertaking. Factoring in the costs of training can achieve while retaining the same labeling costs i.e., training data-efficient (specifically, label efficient) models. We will describe the general principles of Self-Supervised learning which are applicable a new task: 1. Data Efficiency: It relies heavily on labeled data, and hence achieving a high performance on a new task requires a large number of labels. 2. Compute Efficiency: Training for new tasks
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    costs and inference efficiency of DeepSeek 67B (Dense) and DeepSeek-V2. Contents 1 Introduction 4 2 Architecture 6 2.1 Multi-Head Latent Attention: Boosting Inference Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.3 Training and Inference Efficiency . . . . . . . . . . . . . . . . . . . . . . . . 16 4 Alignment 16 4.1 Supervised Fine-Tuning Multi-Head Attention (MHA) (Vaswani et al., 2017) poses a significant obstacle to the inference efficiency of LLMs. Various approaches have been explored to address this issue, including Grouped-Query Attention
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 TiDB v8.5 Documentation

    · · · · · · · · · · · · · · · · · · · · · · · · · · 5240 14.17.4 PD schedules based on topology label· · · · · · · · · · · · · · · · · · · · · · · · · · · · · 5241 14.18 URI Formats of External Storage indexes">Global indexes for partitioned tables (GA) Global indexes can effectively improve the efficiency of retrieving non- �→ partitioned columns, and remove the restriction that a unique key �→ must scanning tasks based on node scale and hardware specifications. This �→ improves statistics collection efficiency by fully utilizing system �→ resources, reduces manual tuning, and ensures stable cluster �→ performance
    0 码力 | 6730 页 | 111.36 MB | 10 月前
    3
  • pdf文档 TiDB v8.4 Documentation

    · · · · · · · · · · · · · · · · · · · · · · · · · · 5219 14.17.4 PD schedules based on topology label· · · · · · · · · · · · · · · · · · · · · · · · · · · · · 5220 14.18 URI Formats of External Storage indexes">Global indexes for partitioned tables (GA) Global indexes can effectively improve the efficiency of retrieving non- �→ partitioned columns, and remove the restriction that a unique key �→ must scanning tasks based on node scale and hardware specifications. This �→ improves statistics collection efficiency by fully utilizing system �→ resources, reduces manual tuning, and ensures stable cluster �→ performance
    0 码力 | 6705 页 | 110.86 MB | 10 月前
    3
  • pdf文档 TiDB v8.3 Documentation

    · · · · · · · · · · · · · · · · · · · · · · · · · · 5167 14.17.4 PD schedules based on topology label· · · · · · · · · · · · · · · · · · · · · · · · · · · · · 5168 21 14.18 URI Formats of External Storage partitioned tables (experimental) Global indexes can effectively improve the efficiency of retrieving non- �→ partitioned columns, and remove the restriction that a unique key �→ must mance for high NDV data #9196 @guo-shaoge Before v8.3.0, TiFlash has low aggregation calculation efficiency during the first stage of HashAgg aggregation when handling data with high NDV (number of distinct
    0 码力 | 6606 页 | 109.48 MB | 10 月前
    3
  • pdf文档 TiDB v8.2 Documentation

    · · · · · · · · · · · · · · · · · · · · · · · · · · 5138 14.17.4 PD schedules based on topology label· · · · · · · · · · · · · · · · · · · · · · · · · · · · · 5139 21 14.18 URI Formats of External Storage loading �→ efficiency by up to 10 times For clusters with a large number of tables and partitions, such as SaaS �→ or PaaS services, improvement in statistics loading efficiency can �→ solve release. For more information, see documentation. 2.2.1.2 Reliability • Improve statistics loading efficiency by up to 10 times #52831 @hawkingrei SaaS or PaaS applications can have a large number of data
    0 码力 | 6549 页 | 108.77 MB | 10 月前
    3
共 1000 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
BoostingSoftwareEfficiencyBalancingandFlexibilityCostofAbstractionsinEmbeddedSystemsHUAWEICLOUDMicroserviceToolImprovesDevelopmentEfficientDeepLearningBookEDLChapterTechniquesAdvancedTechnicalReviewDeepSeekV2StrongEconomicalMixtureExpertsLanguageModelTiDBv8Documentation
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩