积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(33)nim(29)云计算&大数据(8)机器学习(8)数据库(6)Greenplum(6)C++(4)综合其他(1)人工智能(1)

语言

全部英语(44)中文(简体)(3)zh(1)

格式

全部PDF文档 PDF(46)其他文档 其他(2)
 
本次搜索耗时 0.031 秒,为您找到相关结果约 48 个.
  • 全部
  • 后端开发
  • nim
  • 云计算&大数据
  • 机器学习
  • 数据库
  • Greenplum
  • C++
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • 中文(简体)
  • zh
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Machine Learning Pytorch Tutorial

    Prerequisites & What is Pytorch? ● Training & Testing Neural Networks in Pytorch ● Dataset & Dataloader ● Tensors ● torch.nn: Models, Loss Functions ● torch.optim: Optimization ● Save/load models Prerequisites __getitem__(4) 0 1 2 3 4 Tensors ● High-dimensional matrices (arrays) 1-D tensor e.g. audio 2-D tensor e.g. black&white images 3-D tensor e.g. RGB images Tensors – Shape of Tensors ● Check with .shape() dim in PyTorch == axis in NumPy dim 0 dim 0 dim 1 dim 0 dim 1 dim 2 5 5 3 5 4 3 Tensors – Creating Tensors ● Directly from data (list or numpy.ndarray) x = torch.tensor([[1, -1], [-1, 1]]) x
    0 码力 | 48 页 | 584.86 KB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-03深度学习-PyTorch入门

    黄海广 副教授 2 本章目录 01 Tensors张量 02 Autograd自动求导 03 神经网络 04 训练一个分类器 3 1.Tensors张量 01 Tensors张量 02 Autograd自动求导 03 神经网络 04 训练一个分类器 4 1.Tensors张量的概念 Tensor实际上就是一个多维数组(multidimensional 创建与另一个张量具有相同大小的张量,请使用 torch.*_like  如torch.rand_like()  创建与其他张量具有相似类型但大小不同的张量,请使 用tensor.new_*创建操作。 1.Tensors张量的概念 6  查看张量的属性  查看Tensor类型  tensor1 = torch.randn(2,3) #形状为(2,3)一组从标准正态分布 中随机抽取的数据  tensor1  tensor1.ndim #查看维度  查看Tensor是否存储在GPU上  tensor1.is_cuda  查看Tensor的梯度  tensor1.grad 1.Tensors张量的概念 7  Tensor在CPU和GPU之间转换,以及numpy之间的转换  CPU tensor转GPU tensor  cpu_tensor.cuda()  GPU tensor
    0 码力 | 40 页 | 1.64 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    the basic neural network operation is as follows: f(X; W, b) = σ(XW + b) Here, X, W and b are tensors (mathematical term for an n-dimensional matrix) to denote inputs, weights and the bias respectively etc. A neural network model learns W and b tensors which are stored with the model. Hence, they contribute significantly to its size. Of the two tensors, W naturally dominates the size owing to its higher weights to reduce a model’s size: 3The terms tensor and matrix are used interchangeably in the text. Tensors are N-dimensional matrices. The shape of a tensor denotes the size of each of its dimensions, and
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 Dynamic Model in TVM

    input_tensors, out_ndims) -> out_shape_tensors ○ Data dependent (op_attrs, input_data, out_ndims) -> out_shape_tensors ○ Data independent (op_attrs, input_shapes, out_ndims) -> out_shape_tensors© 2019 input_tensors, out_ndims) -> out_shape_tensors ○ Data dependent (op_attrs, input_data, out_ndims) -> out_shape_tensors ○ Data independent (op_attrs, input_shapes, out_ndims) -> out_shape_tensors ● Why inputs[j][i] return out Shape function example Use hybrid script to write shape function Input shape tensors Type checking Data independent© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved
    0 码力 | 24 页 | 417.46 KB | 5 月前
    3
  • pdf文档 keras tutorial

    shape. >>> k.int_shape(data) (1, 3, 3) dot It is used to multiply two tensors. Consider a and b are two tensors and c will be the outcome of multiply of ab. Assume a shape is (4,2) and b shape the input tensors of the model as list. >>> inputs = model.inputs >>> inputs []  model.outputs: Returns all the output tensors of the model is_categorical_crossentropy All above loss function accepts two arguments:  y_true - true labels as tensors  y_pred - prediction with same shape as y_true Import the losses module before using loss function
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) # Directly use generate() and tokenizer.decode() to get the output. # Use `max_new_tokens` add_generation_prompt=True (续下页) 6 Chapter 1. 文档 Qwen (接上页) ) model_inputs = tokenizer([text], return_tensors="pt").to(device) # Directly use generate() and tokenizer.decode() to get the output. # Use `max_new_tokens` messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 ) generated_ids
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    number of LSTM cells based on the sentence’s length. PyTorch • Fundamental Concepts of PyTorch • Tensors • Autograd • Modular structure • Models / Layers • Datasets • Dataloader • Visualization Tools like examples Train Model •Train weights Evaluate Model •Visualise Tensor • Tensor? • PyTorch Tensors are just like numpy arrays, but they can run on GPU. • Examples: And more operations like: Indexing of operations for autograd • t.grad_fn Loading Data, Devices and CUDA • Numpy arrays to PyTorch tensors • torch.from_numpy(x_train) • Returns a cpu tensor! • PyTorch tensor to numpy • t.numpy() • Using
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    compile(self, optimizer, loss, metrics=None, sample_weight_mode=None, weighted_metrics=None, target_tensors=None) 用于配置训练模型。 参数 • optimizer: 字符串(优化器名)或者优化器对象。详见 optimizers。 • loss: 字符串(目标函数名)或目标函数。详见 l class_weight 评估和加权的度 量标准列表。 • target_tensors: 默认情况下,Keras 将为模型的目标创建一个占位符,在训练过程中将使用 目标数据。相反,如果你想使用自己的目标张量(反过来说,Keras 在训练期间不会载入 这些目标张量的外部 Numpy 数据),您可以通过 target_tensors 参数指定它们。它应该 是单个张量(对于单输出 Sequential loss, metrics=None, loss_weights=None, sample_weight_mode=None, weighted_metrics=None, target_tensors=None) 用于配置训练模型。 参数 • optimizer: 字符串(优化器名)或者优化器对象。详见 optimizers。 • loss: 字符串(目标函数名)或目标函数。详见 l
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 Leveraging the Power of C++ for Efficient Machine Learning on Embedded Devices

    classification algorithm 1. Load model and labels 2. Build interpreter 3. Allocate input and output tensors 4. Read image 5. Resize image 6. Copy resized image to input tensor 7. Run inference 8. Extract std::unique_ptr interpreter; 11 builder(&interpreter); 20 / 503. Allocate input and output tensors 1 // defined and properly initialized elsewhere: 2 // std::unique_ptr interpreter;
    0 码力 | 51 页 | 1.78 MB | 6 月前
    3
  • pdf文档 Improving Our Safety With a Quantities and Units Library

    wavelength, position vector, ...) • Quantities may have different character – scalars – vectors – tensors CppCon 2024: Improving our safety with a quantities and units library Introducing quantity_spec wavelength, position vector, ...) • Quantities may have different character – scalars – vectors – tensors • Quantities may be defined as non-negative CppCon 2024: Improving our safety with a quantities
    0 码力 | 207 页 | 6.93 MB | 6 月前
    3
共 48 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往
页
相关搜索词
MachineLearningPytorchTutorial机器学习课程温州大学03深度PyTorch入门EfficientDeepBookEDLChapterCompressionTechniquesDynamicModelinTVMkerastutorialAI模型千问qwen中文文档Keras基于PythonLeveragingthePowerofC++foronEmbeddedDevicesImprovingOurSafetyWithQuantitiesandUnitsLibrary
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩