积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(1890)Python(534)综合其他(489)云计算&大数据(446)Java(392)C++(350)Spring(318)Weblate(302)数据库(271)系统运维(188)

语言

全部英语(2468)中文(简体)(690)中文(繁体)(38)日语(24)法语(20)西班牙语(17)英语(17)德语(16)俄语(16)韩语(15)

格式

全部PDF文档 PDF(2586)其他文档 其他(642)TXT文档 TXT(67)PPT文档 PPT(43)DOC文档 DOC(10)
 
本次搜索耗时 0.018 秒,为您找到相关结果约 1000 个.
  • 全部
  • 后端开发
  • Python
  • 综合其他
  • 云计算&大数据
  • Java
  • C++
  • Spring
  • Weblate
  • 数据库
  • 系统运维
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 日语
  • 法语
  • 西班牙语
  • 英语
  • 德语
  • 俄语
  • 韩语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • TXT文档 TXT
  • PPT文档 PPT
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Lecture Notes on Support Vector Machine

    Lecture Notes on Support Vector Machine Feng Li fli@sdu.edu.cn Shandong University, China 1 Hyperplane and Margin In a n-dimensional space, a hyper plane is defined by ωT x + b = 0 (1) where ω ∈ Rn Rn is the outward pointing normal vector, and b is the bias term. The n-dimensional space is separated into two half-spaces H+ = {x ∈ Rn | ωT x + b ≥ 0} and H− = {x ∈ Rn | ωT x + b < 0} by the hyperplane margin is defined as γ = min i γ(i) (6) 1 ? ? ! ? ! Figure 1: Margin and hyperplane. 2 Support Vector Machine 2.1 Formulation The hyperplane actually serves as a decision boundary to differentiating
    0 码力 | 18 页 | 509.37 KB | 1 年前
    3
  • pdf文档 Lecture 6: Support Vector Machine

    Lecture 6: Support Vector Machine Feng Li Shandong University fli@sdu.edu.cn December 28, 2021 Feng Li (SDU) SVM December 28, 2021 1 / 82 Outline 1 SVM: A Primal Form 2 Convex Optimization Review Hyperplane Separates a n-dimensional space into two half-spaces Defined by an outward pointing normal vector ω ∈ Rn Assumption: The hyperplane passes through origin. If not, have a bias term b; we will then along ω (b < 0 means in opposite direction) Feng Li (SDU) SVM December 28, 2021 3 / 82 Support Vector Machine A hyperplane based linear classifier defined by ω and b Prediction rule: y = sign(ωTx +
    0 码力 | 82 页 | 773.97 KB | 1 年前
    3
  • pdf文档 Machine Learning

    Machine Learning Lecture 10: Neural Networks and Deep Learning Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 2018 Deep Feedforward f(x) is usually a highly non-linear function • Feedforward networks are of extreme importance to machine learning practioners • The conventional neural networks (CNN) used for object recognition from photos
    0 码力 | 19 页 | 944.40 KB | 1 年前
    3
  • pdf文档 Designing a Slimmer Vector of Variants

    L.P. All rights reserved.© 2024 Bloomberg Finance L.P. All rights reserved. Designing a Slimmer Vector of Variants CppCon 2024 September 18, 2024 Chris Fretz Senior C++ Engineer 2© 2024 Bloomberg details my experience in creating a novel solution to an observed problem with memory usage of std::vector> • The talk starts with the motivating use case, considers several candidate Heterogeneous containers like std::vector> are an extremely natural way to represent data across many different paradigms • Naive usage of std::vector> can result in
    0 码力 | 64 页 | 1.98 MB | 6 月前
    3
  • pdf文档 Back to Basics Almost Always Vector

    1#include #include #include <vector> int a[] = {0, 1, 2, 3, 4}; std::vector c = {0, 1, 2, 3, 4}; auto main() -> int { std::cout << "C style array: " << sizeof(a) / sizeof(a[0]) sizeof(a[0]) << std::endl; std::cout << "Vector size: " << c.size() << std::endl; return 0; } 1 2 3 4 5 6 7 8 9 10 11 12 13 14 https://www.reddit.com/r/cpp/comments/qm6i25/my_professor_is_telling _us_to_never_use_vectors/ 2more std::vector? 3How do you read a technical book front to back? As a technical editor... 4#include int main() { int cppconEarlyYears[6] = {2014, 2015, 2016
    0 码力 | 62 页 | 4.86 MB | 6 月前
    3
  • pdf文档 Back to Basics: The Abstract Machine

    Back to Basics: The Abstract Machine Bob Steagall CppCon 2020 K E W B C O M P U T I N GCopyright © 2020 Bob Steagall K E W B C O M P U T I N G Overview/Goals • Describe abstract machines in general general • Describe the C++ abstract machine specifically • Language goals that drive its design • Role in program development and execution • Important definitions and characteristics • Important components components of the abstract machine, and their relationships • Provide a useful overview of the C++ abstract machine CppCon 2020 - The Abstract Machine 2Copyright © 2020 Bob Steagall K E W B C O M P U T I
    0 码力 | 91 页 | 538.90 KB | 6 月前
    3
  • pdf文档 Machine Learning Pytorch Tutorial

    Machine Learning Pytorch Tutorial TA : 曾元(Yuan Tseng) 2022.02.18 Outline ● Background: Prerequisites & What is Pytorch? ● Training & Testing Neural Networks in Pytorch ● Dataset & Dataloader ● Tensors year ■ ref: link1, link2 Some knowledge of NumPy will also be useful! What is PyTorch? ● An machine learning framework in Python. ● Two main features: ○ N-dimensional Tensor computation (like NumPy) translation, synthesis, ...) ○ Most implementations of recent deep learning papers ○ ... References ● Machine Learning 2021 Spring Pytorch Tutorial ● Official Pytorch Tutorials ● https://numpy.org/ Any questions
    0 码力 | 48 页 | 584.86 KB | 1 年前
    3
  • pdf文档 Debugging the BPF Virtual Machine

    Debugging the BPF Virtual Machine Lorenzo Fontana October 28, 2020 ● Debugging is useful to understand how things work ● Sometimes, eBPF programs can’t even load ● I couldn’t find good resources on this this, so, here I am ● I break lots of eBPF programs ● The BPF Virtual machine is not easy to understand Why ? The BPF subsystem lives in the kernel AND The kernel can be debugged using gdb The
    0 码力 | 10 页 | 233.09 KB | 1 年前
    3
  • pdf文档 Machine Learning with ClickHouse

    Machine Learning with ClickHouse Nikolai Kochetov, ClickHouse developer Experimental dataset NYC Taxi and Uber Trips › Where to download: https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page in ClickHouse › stochasticLinearRegression › stochasticLogisticRegression Stochastic methods do support multiple factors. That’s not the most important difference. 23 / 62 Stochastic linear regression CatBoost advantages › Good quality for default parameters › Sophisticated categorical features support › Models analysis tools 44 / 62 Gradient Boosting 45 / 62 Gradient Boosting 46 / 62 Gradient
    0 码力 | 64 页 | 1.38 MB | 1 年前
    3
  • pdf文档 Machine Learning with ClickHouse

    Machine Learning with ClickHouse Nikolai Kochetov, ClickHouse developer Experimental dataset NYC Taxi and Uber Trips › Where to download: https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page in ClickHouse › stochasticLinearRegression › stochasticLogisticRegression Stochastic methods do support multiple factors. That’s not the most important difference. 23 / 62 Stochastic linear regression CatBoost advantages › Good quality for default parameters › Sophisticated categorical features support › Models analysis tools 44 / 62 Gradient Boosting 45 / 62 Gradient Boosting 46 / 62 Gradient
    0 码力 | 64 页 | 1.38 MB | 1 年前
    3
共 1000 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
LectureNotesonSupportVectorMachineLearningDesigningSlimmerofVariantsBacktoBasicsAlmostAlwaysTheAbstractPytorchTutorialDebuggingtheBPFVirtualwithClickHouse
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩