积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(865)Python(352)Java(324)Spring(313)综合其他(244)Weblate(212)Julia(87)Jupyter(62)Scrapy(62)数据库(58)

语言

全部英语(1155)中文(简体)(49)中文(繁体)(20)法语(2)日语(1)韩语(1)英语(1)

格式

全部PDF文档 PDF(798)其他文档 其他(364)TXT文档 TXT(67)PPT文档 PPT(1)
 
本次搜索耗时 0.397 秒,为您找到相关结果约 1000 个.
  • 全部
  • 后端开发
  • Python
  • Java
  • Spring
  • 综合其他
  • Weblate
  • Julia
  • Jupyter
  • Scrapy
  • 数据库
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 法语
  • 日语
  • 韩语
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • TXT文档 TXT
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    techniques. To recap, learning techniques can help us meet our model quality goals. Techniques like distillation and data augmentation improve the model quality, without increasing the footprint of the model training compute budget, so this approach is a non-starter. While techniques like data-augmentation, distillation etc. as introduced in chapter 3 do help us achieve better quality with fewer labels and fewer techniques like distillation might not be as helpful in certain settings. Subclass distillation in the next subsection can help us in some of these cases. Let’s find out how. Subclass Distillation It can also
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    briefly introduced learning techniques such as regularization, dropout, data augmentation, and distillation to improve quality. These techniques can boost metrics like accuracy, precision, recall, etc. often are our primary quality concerns. We have chosen two of them, namely data augmentation and distillation, to discuss in this chapter. This is because, firstly, regularization and dropout are fairly straight-forward straight-forward to enable in any modern deep learning framework. Secondly, data augmentation and distillation can bring significant efficiency gains during the training phase, which is the focus of this chapter
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    efficient model by trimming the number of parameters if needed. An example of a learning technique is Distillation (see Figure 1-10), which helps a smaller model (student) that can be deployed, to learn from a of probabilities for each of the possible classes according to the teacher model. Figure 1-10: Distillation of a smaller student model from a larger pre-trained teacher model. Both the teacher’s weights way. In the original paper which proposed distillation, Hinton et al. replicated performance of an ensemble of 10 models with one model when using distillation. For vision datasets like CIFAR-10, an accuracy
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    model using data augmentation to achieve higher performance and subsequently apply compression or distillation to further reduce its footprint. With this chapter, we hope to have set the stage for your exploration your deep learning projects. They can often be combined with other approaches like quantization, distillation, data augmentation, that we already learned. In the next chapter we will explore some more advanced
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 2020美团技术年货 算法篇

    裁剪和知识蒸馏方式效果对比 在美团搜索核心排序的业务场景下,我们采用知识蒸馏使得 BERT 模型在对响应时 间要求苛刻的搜索场景下符合了上线的要求,并且效果无显著的性能损失。知识蒸 馏(Knowledge Distillation)核心思想是通过迁移知识,从而通过训练好的大模型 得到更加适合推理的小模型。首先我们基于 MT-BERT(12 Layers),在大规模的 美团点评业务语料上进行知识蒸馏得到通用的 MT-BERT Knowledge in a Neural Network. 2015. [7] Yew Ken Chia et al.Transformer to CNN: Label-scarce distillation for efficient text classification. 2018. [8] K-BERT: Enabling Language Representation with
    0 码力 | 317 页 | 16.57 MB | 1 年前
    3
  • pdf文档 2022年美团技术年货 合辑

    2 YOLOv6 量化感知蒸馏框架 针 对 YOLOv6s, 我 们 选 择 对 Neck(Rep-PAN)输 出 的 特 征 图 进 行 通 道 蒸 馏 (channel-wise distillation, CW)。另外,我们采用“自蒸馏”的方法,教师模型是 FP32 精度的 YOLOv6s,学生模型是 INT8 精度的 YOLOv6s。下图 7 是一个简化 示意图,只画出了 Neck Nsight-systems: https://docs.nvidia.com/nsight-systems/UserGuide/index.html [6] Channel-wise Knowledge Distillation for Dense Prediction, https://arxiv.org/ abs/2011.13256 [7] YOLOv6: A Single-Stage Object Detection https://tech.meituan.com/2021/07/08/multi-business-modeling.html. [7] Tang, Jiaxi, and Ke Wang. “Ranking distillation: Learning compact ranking models with high performance for recommender system.” Proceedings
    0 码力 | 1356 页 | 45.90 MB | 1 年前
    3
  • pdf文档 Blender v2.92 参考手册(繁体中文版)

    application-independent set of baked geometric results. This 'distillation' of scenes into baked geometry is exactly analogous to the distillation of lighting and rendering scenes into rendered image data
    0 码力 | 3966 页 | 203.00 MB | 1 年前
    3
  • pdf文档 Blender v2.93 Manual

    application-independent set of baked geometric results. This ‘distillation’ of scenes into baked geometry is exactly analogous to the distillation of lighting and rendering scenes into rendered image data
    0 码力 | 3962 页 | 201.40 MB | 1 年前
    3
  • pdf文档 Blender v2.92 参考手册(繁体中文版)

    application-independent set of baked geometric results. This 'distillation' of scenes into baked geometry is exactly analogous to the distillation of lighting and rendering scenes into rendered image data
    0 码力 | 3868 页 | 198.83 MB | 1 年前
    3
  • pdf文档 Blender v2.92 Manual

    application-independent set of baked geometric results. This ‘distillation’ of scenes into baked geometry is exactly analogous to the distillation of lighting and rendering scenes into rendered image data
    0 码力 | 3868 页 | 198.46 MB | 1 年前
    3
共 1000 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterAdvancedTechniquesTechnicalReviewIntroductionArchitectures2020美团技术年货算法2022合辑Blenderv292参考手册参考手册繁体中文繁体中文93Manual
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩