积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(76)综合其他(34)其它语言(33)数据库(31)Blender(31)Python(30)Django(30)PostgreSQL(14)TiDB(11)Kotlin(5)

语言

全部英语(115)中文(简体)(18)中文(繁体)(10)日语(1)韩语(1)

格式

全部PDF文档 PDF(112)其他文档 其他(33)
 
本次搜索耗时 0.097 秒,为您找到相关结果约 145 个.
  • 全部
  • 后端开发
  • 综合其他
  • 其它语言
  • 数据库
  • Blender
  • Python
  • Django
  • PostgreSQL
  • TiDB
  • Kotlin
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 日语
  • 韩语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 The Lean Reference Manual Release 3.3.0

    Assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.5 Constructors, Projections, and Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.6 Structured Proofs type α or report an error if it fails. Lean supports anonymous constructor notation, anonymous projections, and various forms of match syntax, including destructuring λ and let. These, as well as notation 2 → a^n + b^n ̸= c^n def unbounded (f : N → N) : Prop := ∀ M, ∃ n, f n ≥ M 3.5 Constructors, Projections, and Matching Lean’s foundation, the Calculus of Inductive Constructions, supports the declaration
    0 码力 | 67 页 | 266.23 KB | 1 年前
    3
  • pdf文档 Agda User Manual v2.6.4.1

    signatures, even when in an abstract block! To work around this we have to define aliases for the projections functions: -- A property about the representation of zero integers: abstract private (continues allowed: -- third (cons _ (cons _ (cons x _))) = x Instead, you can use the record fields as projections: third str = str .tl .tl .hd The constructor can be used as usual in the right-hand side of definitions: their name with a dot in the definition of the record type. Projections for irrelevant fields are only created if option --irrelevant-projections is supplied (since Agda > 2.5.4). Example 1. A record type
    0 码力 | 311 页 | 1.38 MB | 1 年前
    3
  • pdf文档 Agda User Manual v2.6.4.3

    signatures, even when in an abstract block! To work around this we have to define aliases for the projections functions: -- A property about the representation of zero integers: abstract private (continues allowed: -- third (cons _ (cons _ (cons x _))) = x Instead, you can use the record fields as projections: third str = str .tl .tl .hd The constructor can be used as usual in the right-hand side of definitions: their name with a dot in the definition of the record type. Projections for irrelevant fields are only created if option --irrelevant-projections is supplied (since Agda > 2.5.4). Example 1. A record type
    0 码力 | 311 页 | 1.38 MB | 1 年前
    3
  • pdf文档 Agda User Manual v2.6.4.2

    signatures, even when in an abstract block! To work around this we have to define aliases for the projections functions: -- A property about the representation of zero integers: abstract private (continues allowed: -- third (cons _ (cons _ (cons x _))) = x Instead, you can use the record fields as projections: third str = str .tl .tl .hd The constructor can be used as usual in the right-hand side of definitions: their name with a dot in the definition of the record type. Projections for irrelevant fields are only created if option --irrelevant-projections is supplied (since Agda > 2.5.4). Example 1. A record type
    0 码力 | 311 页 | 1.38 MB | 1 年前
    3
  • pdf文档 Agda User Manual v2.6.4

    signatures, even when in an abstract block! To work around this we have to define aliases for the projections functions: -- A property about the representation of zero integers: abstract private (continues allowed: -- third (cons _ (cons _ (cons x _))) = x Instead, you can use the record fields as projections: third str = str .tl .tl .hd The constructor can be used as usual in the right-hand side of definitions: their name with a dot in the definition of the record type. Projections for irrelevant fields are only created if option --irrelevant-projections is supplied (since Agda > 2.5.4). Example 1. A record type
    0 码力 | 313 页 | 1.38 MB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.3

    signatures, even when in an abstract block! To work around this we have to define aliases for the projections functions: -- A property about the representation of zero integers: abstract private allowed: -- third (cons _ (cons _ (cons x _))) = x Instead, you can use the record fields as projections: third str = str .tl .tl .hd The constructor can be used as usual in the right-hand side of definitions: their name with a dot in the definition of the record type. Projections for irrelevant fields are only created if option --irrelevant-projections is supplied (since Agda > 2.5.4). Example 1. A record type
    0 码力 | 379 页 | 354.83 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.2.2

    signatures, even when in an abstract block! To work around this we have to define aliases for the projections functions: -- A property about the representation of zero integers: abstract private their name with a dot in the definition of the record type. Projections for irrelevant fields are only created if option --irrelevant-projections is supplied (since Agda > 2.5.4). Example 1. A record type -> (x : Subset A P) -> P (Subset.elem x) certificate (a # p) = irrAx p Example 4. Irrelevant projections are justified by the irrelevance axiom. .unsquash' : ∀ {A} → Squash A → A unsquash' (squash x)
    0 码力 | 354 页 | 433.60 KB | 1 年前
    3
  • pdf文档 Agda User Manual v2.6.3

    signatures, even when in an abstract block! To work around this we have to define aliases for the projections functions: -- A property about the representation of zero integers: abstract private posZ : allowed: -- third (cons _ (cons _ (cons x _))) = x Instead, you can use the record fields as projections: third str = str .tl .tl .hd The constructor can be used as usual in the right-hand side of definitions: their name with a dot in the definition of the record type. Projections for irrelevant fields are only created if option --irrelevant-projections is supplied (since Agda > 2.5.4). Example 1. A record type
    0 码力 | 288 页 | 1.24 MB | 1 年前
    3
  • pdf文档 Agda User Manual v2.6.2.2

    signatures, even when in an abstract block! To work around this we have to define aliases for the projections functions: -- A property about the representation of zero integers: abstract private posZ : their name with a dot in the definition of the record type. Projections for irrelevant fields are only created if option --irrelevant-projections is supplied (since Agda > 2.5.4). Example 1. A record type -> (x : Subset A P) -> P (Subset.elem x) certificate (a # p) = irrAx p Example 4. Irrelevant projections are justified by the irrelevance axiom. .unsquash' : ∀ {A} → Squash A → A unsquash' (squash x)
    0 码力 | 257 页 | 1.16 MB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.1.3

    their name with a dot in the definition of the record type. Projections for irrelevant fields are only created if option --irrelevant-projections is supplied (since Agda > 2.5.4). Example 1. A record type inconsistency. This might be fixed in the future. --experimental-irrelevance and --irrelevant-projections; enables potentially unsound irrelevance features (irrelevant levels, irrelevant data matching time. We can for instance prove that any pair is equal to the pairing of its first and second projections, a property commonly called eta-equality: eta : (p@(a , b) : Σ A B) → p ≡ (a , b) eta p = refl
    0 码力 | 305 页 | 375.80 KB | 1 年前
    3
共 145 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 15
前往
页
相关搜索词
TheLeanReferenceManualRelease3.3AgdaUserv26.46.36.26.1
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩