cppcon 2021 safety guidelines for C parallel and concurrencymine, all mine! You can’t have them. Agenda 1. Current status of C++ safety: MISRA and C++ CG 2. Parallel Safety rules 3. Automotive Safety case Safety Critical API Evolution minimize API surface area no harm What is still missing? So far most only deal with Sequential code Very few deal with Parallel code Even fewer deal with Concurrent, event driven code None deal with Heterogeneous dispatch rules pulled from • C++CG • HIC++ • REphrase H2020 project • CERT C++ • JSF++ (no parallel rules) • WG23 (no parallel rules) • Added some from our own contributions • Many joined, average 5-8 per meeting0 码力 | 52 页 | 3.14 MB | 6 月前3
Greenplum开源MPP数据库介绍Greenplum 开源MPP数据仓库介绍 李晓亮Greenplum工程师、内核团队经理 Confidential │ ©2022 VMware, Inc. 2 Agenda Ø Greenplum简介 Ø Greenplum的MPP架构 Ø 分布式优化器: Postgres planner 和 ORCA Ø 分布式事务和执行 Ø Greenplum存储 Ø Greenplum 7 Confidential │ ©2022 VMware, Inc. 3 Greenplum简介:什么是Greenplum? 基于PostgreSQL、开源、分布式MPP、ACID完备、为OLAP优化的关系型数据仓库。 https://greenplum.org https://github.com/greenplum-db/gpdb Confidential 2003年,Luke Lonergan 和 Scott Yara 发起 Greenplum项目,从 PostgreSQL 8 分支,做成 MPP架构 Ø 2010年被EMC收购 Ø 2012年成为Pivotal的一部分 Ø 2015年开源,可能是世界上第一个成熟商用的开源 MPP数据仓库 Ø 2019年底跟随Pivotal被VMware收购 Confidential │ ©2022 VMware, Inc 0 码力 | 23 页 | 4.55 MB | 1 年前3
Greenplum on Kubernetes
容器化MPP数据库Greenplum on Kubernetes 容器化MPP数据库 AGENDA 云数据库背景 云数据库实现方案 Greenplum on Kubernetes Greenplum Operator 总结 云数据库背景 云数据库背景 ● 资源变化 ○ 本地资源 → 云 ○ 静态资源 → 弹性需求 ● 数据变化 ○ 内部数据 → 多数据源 ○ 数据规模 → 不易预测 ○ 数据格式 StatefulSet (2) Primary Segment StatefulSet (N) Mirror Segment StatefulSet (N) Cluster PV (N) Database Service (Active Master) Greenplum on Kubernetes Master节点示例 Segment节点示例 Greenplum on Kubernetes Fluentd ● 监控及Metrics收集 ○ Prometheus ● 可视化 ○ Grafana ● …... 总结 Greenplum → Kubernetes Native Database0 码力 | 33 页 | 1.93 MB | 1 年前3
CurveBS IO Processing FlowCurveBS I/O processing flow Before introducing IO processing flow, we first describe the overall architecture, data organization and topology structure of CURVE. CurveBS uses the central sockets. l Nebdserver: Accepts requests from NEBDClient and calls Curve Client for corresponding processing. it can receive requests from different NEBDClients.3. Through the above splitting, NebdClient NebdClient replaces Curve Client and directly interfaces with upper services. There is no logical processing in NEBDClient, it just proxy requests and has limited retries, which ensuring that NEBDClient0 码力 | 13 页 | 2.03 MB | 6 月前3
Using MySQL for Distributed Database Architectures© 2018 Percona. 1 Peter Zaitsev Using MySQL for Distributed Database Architectures CEO, Percona PingCAP Infra Meetup, Shanghai, China, May 26, 2018 © 2018 Percona. 2 About Percona Solutions of Thousands of Updates/Sec Traverse Tens of Millions of Rows/Sec Comfortably Handle Several TB Database size © 2018 Percona. 7 Lets Do Some Math 100.000 QPS 10 Queries per User Interaction 10 Paired with Replicated Data © 2018 Percona. 24 Where Replication Happens Storage Level Database Level Application Level © 2018 Percona. 25 Storage Level Replication Replication in SAN/NAS0 码力 | 67 页 | 4.10 MB | 1 年前3
Materialize MySQL Database engine in ClickHouseMaterializeMySQL Database engine in ClickHouse WinterZhang(张健) About me • Active ClickHouse Contributor • MaterializeMySQL Database Engine • Custom HTTP Handler • MySQL Database Engine • BloomFilter query MySQL Database Engine • Mapping to MySQL database • Fetch table list from MySQL • Fetch table struct from MySQL • Fetch data from MySQL when execute query MaterializeMySQL Database Engine • to MySQL database • Consume MySQL BINLOG and store to MergeTree • Experimental feature (20.8, recommend latest stable version) MaterializeMySQL Database Engine MaterializeMySQL Database Engine0 码力 | 35 页 | 226.98 KB | 1 年前3
Firebird Internals: Inside a Firebird DatabaseFirebird Internals Inside a Firebird Database Norman Dunbar Version 1.2, 13 August 2021 Table of Contents 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Database Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3. Standard Database Page Header. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4. Database Header Page — Type 0x010 码力 | 63 页 | 261.00 KB | 1 年前3
TIDB The Large Scale Relational Database SolutionTIDB THE LARGE SCALE RELATIONAL DATABASE SOLUTION PRODUCT REVIEW 2022 Piloting tomorrow’s creativity https://www.iconic.inc Iconic Data Japan (IDJ) is a multi-national data services company that ICONIC DATA, DATATECH ICONIC DATA © ALL RIGHTS RESERVED. 1 AS A SOLUTION TIDB 2 TiDB is a new database solution that is targeted primarily to clients that need to handle very large databases, with very very large frequency of queries. If those two problems describe your business then this database solution is very attractive, as it also features a number of other features that make it stand out from0 码力 | 12 页 | 5.61 MB | 6 月前3
TiDB Database Auditing User Guide (new)Introduction 1 Differences between database auditing and the audit plugin 1 Obtain the database auditing feature 2 The range of database auditing 2 The events of database auditing 3 Recorded information 20 RESTRICTED_AUDIT_ADMIN 20 Migration from audit plugin to database auditing 20 TiDB Database Auditing User Guide Introduction Database auditing is an important feature in TiDB Enterprise Edition, the data security and compliance for enterprises. The database auditing feature can help managers in enterprises track the source and impact of database operations to ensure that data would not be illegally0 码力 | 23 页 | 328.42 KB | 1 年前3
PieCloudDB Database 产品白皮书iclrudpB 罗 罗 罗_ < B Database 本EMPP 基灿异并行计算) 的云原生虚拟数仓 产品白皮书 ENRANSGenpPie.com 20230penPieAIIRight Reserved, Openpie | PiecloudDB 基于eMPP (弹性大规模并行计算) 的云原生虚拟数仓 产品白皮书 行业背景 数据量的爆发式增长 数据库的未来在云上 传统数仓的痛点 Gartner: 数据库中国市场指南 传统数仓的痛点 很多受欢迎的数据库仓库均为分布式数据库,而典型 分布式数据库系统大多是 MPP (大规模并行计算) 架构。 MPP 架构的数据库以 PC 服务器为单位,通过如下图所示的组群方式来扩展存储和计算。假设一个宽表有3亿条记录 MPP 数据库会尝试在每台 PC 服务器的硬盘上分布1 录。数据计算时,所有机器同时并行计算,理论上最 把计算时间降低到单机部署的 把计算时间降低到单机部署的 1/n (n为机器数量) ,节省了海量数据的处理时间。 传统数据仓库架构 然而,随着数据量的不断尝升,企业对数据仓库的要求也越来越高,在使用过程中,传统 MPP 数据库解决方案迎来 了一系列的瓶颈: 传统数据仓库的计算和存情是| 容计算资源和存储资源,在扩缩容、运维、迁移上都存在一, 报表结! 传统数据仓库无法及时扩 导致大数据系统天 价值所带来的商业机会 用户在扩 必须同时扩0 码力 | 17 页 | 2.68 MB | 1 年前3
共 1000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 100













