积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(538)云计算&大数据(261)C++(153)VirtualBox(113)数据库(112)系统运维(106)Python(96)Julia(87)综合其他(82)Conan(74)

语言

全部英语(686)中文(简体)(356)中文(繁体)(36)zh(5)西班牙语(4)日语(4)中文(简体)(4)韩语(3)德语(2)

格式

全部PDF文档 PDF(1024)其他文档 其他(77)PPT文档 PPT(20)
 
本次搜索耗时 0.025 秒,为您找到相关结果约 1000 个.
  • 全部
  • 后端开发
  • 云计算&大数据
  • C++
  • VirtualBox
  • 数据库
  • 系统运维
  • Python
  • Julia
  • 综合其他
  • Conan
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • zh
  • 西班牙语
  • 日语
  • 中文(简体)
  • 韩语
  • 德语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 FFmpeg在Intel GPU上的硬件加速与优化

    FFmpeg在Intel GPU上的 硬件加速与优化 赵军 DCG/NPG @ Intel 介绍FFmpeg VAAPI • Media pipeline review • 何谓FFmpeg VAAPI • 为什么我们需要FFmpeg VAAPI • 当前状态 • 更进一步的计划 • 附录 典型的 media pipeline File Device Network Stream com/01org/libva • 依赖于后端驱动,可以提供Video硬件加速 • 解码 • 编码 • 图像后处理 可用的后端驱动 • Intel VA(i965) driver for Intel chip-sets • Intel hybrid driver • Intel HD driver • Mesa's state-trackers for gallium drivers: • radeon, nouveau (?), freedreno, … • 废弃的 API bridges • vdpau—va bridge • powervr—va bridge • … Intel GPU简介 • Gfx Label • Gen3: Pinetrail (Pineview) • Gen4: G965 • Gen5: G4X, Ironlake (Piketon, Calpella)
    0 码力 | 26 页 | 964.83 KB | 1 年前
    3
  • pdf文档 Go on GPU

    Changkun Ou. 2023. Go on GPU. GopherChina 2023. Session "Foundational Toolchains" Go on GPU Changkun Ou changkun.de/s/gogpu GopherChina 2023 Session “Foundational Toolchains” 2023 June 10 1 Changkun Ou. 2023. Go on GPU. GopherChina 2023. Session "Foundational Toolchains" Agenda ● Basic knowledge for interacting with GPUs ● Accelerate Go programs using GPUs ● Challenges in Go when using outlooks 2 Changkun Ou. 2023. Go on GPU. GopherChina 2023. Session "Foundational Toolchains" Agenda ● Basic knowledge for interacting with GPUs ○ Motivation ○ GPU Driver and Standards ○ Render and
    0 码力 | 57 页 | 4.62 MB | 1 年前
    3
  • pdf文档 Deploy VTA on Intel FPGA

    INDUSTRIES, INCORPORATED ACCELERATED VISUAL PERCEPTION LIANGFU CHEN 11/16/2019 DEPLOY VTA ON INTEL FPGA©2019 HARMAN INTERNATIONAL INDUSTRIES, INCORPORATED 2 Moore’s Law is Slowing Down MOTIVATION©2019 Terasic DE10-Nano DEPLOY VTA ON INTEL FPGA©2019 HARMAN INTERNATIONAL INDUSTRIES, INCORPORATED 5 Software - CMA Contiguous Memory Allocation – Linux Kernel DEPLOY VTA ON INTEL FPGA https://pynq.readthedocs INCORPORATED 6 Software - CMA Contiguous Memory Allocation – Linux Kernel Module DEPLOY VTA ON INTEL FPGA Setup Environment Variables Navigate to 3rdparty/cma and build kernel module Copy kernel module
    0 码力 | 12 页 | 1.35 MB | 5 月前
    3
  • ppt文档 GPU Resource Management On JDOS

    GPU Resource Management On JDOS 梁永清 liangyongqing1@jd.com 提供的服务 1. 用于实验的 GPU 容器 2.基于 Kubeflow 的机器学习训练服务 3.模型管理和模型 Serving 服务 Experiment Training Serving 均基于容器,不对业务方直接提供 GPU 物理机 GPU 实验 JDOS 常规的容器服务 常规的容器服务 ,使用 gpu 的 zone , 自行设定相应的镜像即 可,有完善的周边服务 训练服务 • 提供基于 kubeflow 的分布式训练方案 – 界面化操作,用户提供代码地址和执行命令即可 – 系统内建支持安装 pip 依赖 – 自制存储插件支持分布式文件系统存储用户数据 – 支持官方镜像,不需要 JDOS 提前协助制作镜像 – 提供 tensorboard 作为训练监控实时查看训练状态 作为训练监控实时查看训练状态 – 用户训练完成后释放 GPU 资源,提高 GPU 利用率 – Job 调度 (部门 quota 限制 + 优先级) • 创建训练 – 用户选择集群提供代码地址和执行命令即可 – 选择所用框架(镜像):支持官方,亦可自制 (提供 dockerfile 生成镜像服务) – 选择存储来源:对接了内部的存储 – 填写代码地址,执行的命令等 – 可以选择是否监控训练,提供
    0 码力 | 11 页 | 13.40 MB | 1 年前
    3
  • pdf文档 大数据时代的Intel之Hadoop

    大数据时代的Intel乊Hadoop 系统方案架构师:朱海峰 英特尔®中国于计算创新中心 2013.4 北京 法律声明 本文所提供乊信息均不英特尔® 产品相关。本文丌代表英特尔公司戒其它机构向仸何人明确戒隐含地授予仸何知识产权。除相关产品的英特尔销售条款不条件中列明乊担保条件以外,英特 尔公司丌对销售和/戒使用英特尔产品做出其它仸何明确戒隐含的担保,包括对适用亍特定用途、适销 订购产品前,请联系您当地的英特尔销售办事处戒分销商,了解最新技术规范。 如欲获得本文戒其它英特尔文献中提及的带订单编号的文档副本,可致电 1-800-548-4725,戒访问http://www.intel.com/design/literature.htm 性能测试和等级评定均使用特定的计算 机系统和/戒组件迚行测量,这些测试大致反映了英特尔® 产品的性能。系统硬件、软件设计戒配置的仸何差异都可能 特尔主劢管理技术可能在基亍主机操 作系统的虚拟与用网(VPN)上,戒者在无线连接、使用电池电源、睡眠、休眠戒关机时无法使用戒是某些功能受到限制。如欲了解更多信息,请访问:httP: //www.intel.com/technology/iamt。 英特尔® 架构上的 64 位计算要求计算机系统采用支持英特尔® 64 架构的处理器、芯片组、基本输入输出系统(BIOS)、操作系统、设备驱劢程序和应用。实际性能会根据您使用的具体
    0 码力 | 36 页 | 2.50 MB | 1 年前
    3
  • pdf文档 Bridging the Gap: Writing Portable Programs for CPU and GPU

    1/66Bridging the Gap: Writing Portable Programs for CPU and GPU using CUDA Thomas Mejstrik Sebastian Woblistin 2/66Content 1 Motivation Audience etc.. Cuda crash course Quiz time 2 Patterns Oldschool Motivation Patterns The dark path Cuda proposal Thank you Why write programs for CPU and GPU Difference CPU/GPU Algorithms are designed differently Latency/Throughput Memory bandwidth Number of cores Motivation Patterns The dark path Cuda proposal Thank you Why write programs for CPU and GPU Difference CPU/GPU Why it makes sense? Library/Framework developers Embarrassingly parallel algorithms User
    0 码力 | 124 页 | 4.10 MB | 6 月前
    3
  • pdf文档 激活函数与GPU加速

    激活函数与GPU加速 主讲人:龙良曲 Leaky ReLU simply SELU softplus GPU accelerated 下一课时 测试 Thank You.
    0 码力 | 11 页 | 452.22 KB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 08 CUDA 开启的 GPU 编程

    CUDA 开启的 GPU 编程 by 彭于斌( @archibate ) 往期录播: https://www.bilibili.com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 前置条件 • 学过 C/C++ 语言编程。 • 理解 malloc/free 之类的概念。 • 熟悉 STL 中的容器、函数模板等。 做不到的。 编写一段在 GPU 上运行的代码 • 定义函数 kernel ,前面加上 __global__ 修 饰符,即可让他在 GPU 上执行。 • 不过调用 kernel 时,不能直接 kernel() ,而 是要用 kernel<<<1, 1>>>() 这样的三重尖括 号语法。为什么?这里面的两个 1 有什么用 ?稍后会说明。 • 运行以后,就会在 GPU 上执行 printf 了。 kernel 函数在 GPU 上执行,称为核 函数,用 __global__ 修饰的就是核函数。 没有反应?同步一下! • 然而如果直接编译运行刚刚那段代码,是不会打印出 Hello, world! 的。 • 这是因为 GPU 和 CPU 之间的通信,为了高效,是异 步的。也就是 CPU 调用 kernel<<<1, 1>>>() 后,并不 会立即在 GPU 上执行完毕,再返回。实际上只是把
    0 码力 | 142 页 | 13.52 MB | 1 年前
    3
  • pdf文档 Heterogeneous Modern C++ with SYCL 2020

    http://wongmichael.com/about ● C++11 book in Chinese: https://www.amazon.cn/dp/B00ETOV2OQ We build GPU compilers for some of the most powerful supercomputers in the world 34 Nevin “:-)” Liber nliber@anl Attribution 4.0 International License SYCL Single Source C++ Parallel Programming GPU FPGA DSP Custom Hardware GPU CPU CPU CPU Standard C++ Application Code C++ Libraries ML Frameworks give better performance on complex apps and libs than hand-coding AI/Tensor HW GPU FPGA DSP Custom Hardware GPU CPU CPU CPU AI/Tensor HW Other BackendsSYCL 2020 is here! Open Standard for
    0 码力 | 114 页 | 7.94 MB | 6 月前
    3
  • pdf文档 Distributed Ranges: A Model for Building Distributed Data Structures, Algorithms, and Views

    performance claims, visit www.intel.com/PerformanceIndex or scan the QR code: © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries about future Intel products. - I work in Intel’s research labs. Work described here will involve experimental prototypes and early research.Problem: writing parallel programs is hard - Multi-GPU, multi-CPU / execution necessary. CPU NIC GPU GPU GPU GPU Xe LinkMulti-GPU Systems - NUMA regions: - 4+ GPUs - 2+ CPUs CPU NIC GPU GPU GPU GPU Xe LinkMulti-GPU Systems - NUMA regions: - 4+ GPUs
    0 码力 | 127 页 | 2.06 MB | 6 月前
    3
共 1000 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
FFmpegIntelGPU硬件加速硬件加速优化GoonDeployVTAFPGAJDOS大数时代HadoopBridgingtheGapWritingPortableProgramsforCPUand深度学习PyTorch入门实战28激活函数C++高性性能高性能并行编程课件08HeterogeneousModernwithSYCL2020DistributedRangesModelBuildingDataStructuresAlgorithmsViews
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩