积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(1066)Python(353)云计算&大数据(254)综合其他(228)Java(222)Spring(217)数据库(150)Weblate(122)C++(111)Julia(87)

语言

全部英语(1466)中文(简体)(241)中文(繁体)(22)英语(11)日语(9)韩语(9)西班牙语(7)德语(6)俄语(6)

格式

全部PDF文档 PDF(1359)其他文档 其他(420)DOC文档 DOC(10)PPT文档 PPT(5)TXT文档 TXT(3)
 
本次搜索耗时 0.022 秒,为您找到相关结果约 1000 个.
  • 全部
  • 后端开发
  • Python
  • 云计算&大数据
  • 综合其他
  • Java
  • Spring
  • 数据库
  • Weblate
  • C++
  • Julia
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 英语
  • 日语
  • 韩语
  • 西班牙语
  • 德语
  • 俄语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • DOC文档 DOC
  • PPT文档 PPT
  • TXT文档 TXT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    Chapter 3 - Learning Techniques “The more that you read, the more things you will know. The more that you learn, the more places you'll go.” ― Dr. Seuss Model quality is an important benchmark to evaluate evaluate the performance of a deep learning model. A language translation application that uses a low quality model would struggle with consumer adoption because it wouldn’t serve its intended purpose flexibility to trade off some quality for smaller footprints. In the first chapter, we briefly introduced learning techniques such as regularization, dropout, data augmentation, and distillation to improve quality
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    Advanced Learning Techniques “Tell me and I forget, teach me and I may remember, involve me and I learn.” – Benjamin Franklin This chapter is a continuation of Chapter 3, where we introduced learning techniques techniques. To recap, learning techniques can help us meet our model quality goals. Techniques like distillation and data augmentation improve the model quality, without increasing the footprint of the model this chapter by presenting self-supervised learning which has been instrumental in the success of natural language models like BERT. Self-Supervised learning helps models to quickly achieve impressive
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    variety of techniques in the last few chapters to improve efficiency and boost the quality of deep learning models. These techniques are just a small subset of the available techniques. It is often tedious these four options to make an informed decision. Blessed with a large research community, the deep learning field is growing at a rapid pace. Over the past few years, we have seen newer architectures, techniques performance benchmarks higher. Figure 7-1 shows some of the choices we face when working on a deep learning problem in the vision domain for instance. Some of these choices are boolean, others have discrete
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    Introduction to Efficient Deep Learning Welcome to the book! This chapter is a preview of what to expect in the book. We start off by providing an overview of the state of deep learning, its applications, and our motivation behind seeking efficiency in deep learning models. We will also introduce core areas of efficiency techniques (compression techniques, learning techniques, automation, efficient models & even if you just read this chapter, you would be able to appreciate why we need efficiency in deep learning models today, how to think about it in terms of metrics that you care about, and finally the tools
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 8 4 Deep Learning with Python 费良宏

    2016的目标:Web爬虫+深度学习+自然语言处理 = ? Microso� Apple AWS 今年最激动人心的事件? 2016.1.28 “Mastering the game of Go with deep neural networks and tree search” 今年最激动人心的事件? 2016年3月Alphago 4:1 击败李世石九段 人工智能 VS. 机器学习 VS. 深度学习 文的自动分类 半监督学习 - 介于监督学习和无监督学习之间,算法: Graph Inference 或者Laplacian SVM 强化学习- 通过观察来学习做成如何的动作, 算法:Q-Learning以及时间差学习 机器学习- 方法及流程 输入特征选择 – 基于什么进行预测 目标 – 预测什么 预测功能 – 回归、聚类、降维... Xn -> F(xn) -> T(x) 机器学习- (NYU,2002), Facebook AI, Google Deepmind Theano (University of Montreal, ~2010), 学院派 Kersa, “Deep Learning library for Theano and TensorFlow” Caffe (Berkeley),卷积神经网络,贾扬清 TensorFlow (Google) Spark MLLib
    0 码力 | 49 页 | 9.06 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    footprint or quality, we should consider employing suitable efficient architectures. The progress of deep learning is characterized by the phases of architectural breakthroughs to improve on previous results and (CNNs) were another important breakthrough that enabled learning spatial features in the input. Recurrent Neural Nets (RNNs) facilitated learning from the sequences and temporal data. These breakthroughs optimization experience using these efficient layers and architectures. Let’s start our journey with learning about embeddings in the next section. Embeddings for Smaller and Faster Models We humans can intuitively
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    make it shorter.” Blaise Pascal In the last chapter, we discussed a few ideas to improve the deep learning efficiency. Now, we will elaborate on one of those ideas, the compression techniques. Compression gentle introduction to the idea of compression. Details of quantization and its applications in deep learning follow right after. The quantization section delves into the implementation details using code compression might lead to degradation in quality. In our case, we are concerned about compressing the deep learning models. What do we really mean by compressing though? As mentioned in chapter 1, we can break
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    them, with an eye towards conceptual understanding as well as practically using them in your deep learning models. We start with sparsity. If your goal was to optimize your brain for storage, you can different possible methods of picking the connections and nodes to prune, and how to prune a given deep learning model to achieve storage and latency gains with a minimal performance tradeoff. Next, the chapter effectiveness. Later on in this chapter, we have a project that relies on it for sparsifying a deep learning model. The authors of the Optimal Brain Damage (OBD) paper approximate the saliency score using
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 Learning Gulp

    0 码力 | 45 页 | 977.19 KB | 1 年前
    3
  • pdf文档 Machine Learning

    Machine Learning Lecture 10: Neural Networks and Deep Learning Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 2018 Deep Feedforward usually a highly non-linear function • Feedforward networks are of extreme importance to machine learning practioners • The conventional neural networks (CNN) used for object recognition from photos are units), and output layer 7 / 19 Neural Feedforward Networks (Contd.) • We approximate f ∗(x) by learning f(x) from the given training data • In the output layer, f(x) ≈ y for each training data, but the
    0 码力 | 19 页 | 944.40 KB | 1 年前
    3
共 1000 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterTechniquesAdvancedTechnicalReviewAutomationIntroductionwithPython费良宏ArchitecturesCompressionGulpMachine
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩