Solving Nim by the Use of Machine LearninggetSum () 12 self.board.sort(reverse = True) 13 self. listOfStates = [] 14 self. listOfStates .append(self.board [:]) 15 self.T = [] 16 self.Q = [] Listing 3: Initialization of the programs using 23 def setup(self , type): 24 timeStart = time.time () 25 for i in range(self.sum): 26 self.T.append ([0] * self.sum) 27 for x in range(len(self. listOfStates [i])): 28 for y in range (1, self. listOfStates [i+tmpValue] = tmpList [:] 36 self.Q.append ([]) 37 for j in range(self.sum -1): 38 if(self.T[i][j] == 1): 39 self.Q[i]. append(random.random ()) 40 else: 41 self.Q[i]. append(-np.inf) 42 if (self.T[i][ self0 码力 | 109 页 | 6.58 MB | 1 年前3
MYBATIS Quick GuideStringBuilder(); sb.append("Id = ").append(id).append(" - "); sb.append("Name = ").append(name).append(" - "); sb.append("Branch = ").append(branch).append(" - "); sb.append("Percentage = ") ").append(percentage).append(" - "); sb.append("Phone = ").append(phone).append(" - "); sb.append("Email = ").append(email); return sb.toString(); } } Student.xml File To define StringBuilder(); sb.append("Id = ").append(id).append(" - "); sb.append("Name = ").append(name).append(" - "); sb.append("Branch = ").append(branch).append(" - "); sb.append("Percentage = ")0 码力 | 34 页 | 301.72 KB | 1 年前3
So You Think You Can Hashseparately accessible: 1. Init / construction of the hasher 2. Write overloads for primitive/std types (append to the hash) 3. Finalize function -> size_t2024 Victor Ciura | @ciura_victor - Unleashing 🦀 separately accessible: 1. Init / construction of the hasher 2. Write overloads for primitive/std types (append to the hash) 3. Finalize function -> size_t This technique ensures that: we no longer need to the need to touch the data model and how each field recursively contributes to the overall digest (append/write). 🔶 The same technique can be used with almost every existing hashing algorithm, eg.0 码力 | 119 页 | 6.54 MB | 6 月前3
pandas: powerful Python data analysis toolkit - 0.13.1’A’] In [17]: dfi Out[17]: A B C 0 0 1 0 1 2 3 2 2 4 5 4 [3 rows x 3 columns] This is like an append operation. In [18]: dfi.loc[3] = 5 In [19]: dfi Out[19]: A B C 0 0 1 0 1 2 3 2 2 4 5 4 3 5 fixed(f) or table(t) the same defaults as prior < 0.13.0 remain, e.g. put implies fixed format and append implies table format. This default format can be set as an option by setting io.hdf.default_format pandas: powerful Python data analysis toolkit, Release 0.13.1 In [47]: df.to_hdf(path,’df_table2’,append=True) In [48]: df.to_hdf(path,’df_fixed’) In [49]: with get_store(path) as store: ....: print(store)0 码力 | 1219 页 | 4.81 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.14.0’A’] In [17]: dfi Out[17]: A B C 0 0 1 0 1 2 3 2 2 4 5 4 [3 rows x 3 columns] This is like an append operation. In [18]: dfi.loc[3] = 5 In [19]: dfi Out[19]: A B C 0 0 1 0 1.3. v0.13.0 (January fixed(f) or table(t) the same defaults as prior < 0.13.0 remain, e.g. put implies fixed format and append implies table format. This default format can be set as an option by setting io.hdf.default_format DataFrame(randn(10,2)) In [46]: df.to_hdf(path,’df_table’,format=’table’) In [47]: df.to_hdf(path,’df_table2’,append=True) In [48]: df.to_hdf(path,’df_fixed’) In [49]: with get_store(path) as store: ....: print(store)0 码力 | 1349 页 | 7.67 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.12with a AttributeConflictWarning if you are attempting to append an index with a different frequency than the existing, or attempting to append an index with a different name than the existing – support unique method, can be replicated by select_column(key,column).unique() – min_itemsize parameter to append will now automatically create data_columns for passed keys 1.2.8 Enhancements • Improved performance read_csv/to_csv In [51]: df = DataFrame(dict(A=range(5), B=range(5))) In [52]: df.to_hdf(’store.h5’,’table’,append=True) In [53]: read_hdf(’store.h5’, ’table’, where = [’index>2’]) A B 3 3 3 4 4 4 – provide0 码力 | 657 页 | 3.58 MB | 1 年前3
TiDB 2.1.7how- ever, can never observe y alone, since the same process inserted x prior to y. 2.6 Monotonic & Append Some of Jepsen’s checkers (e.g. linearizability) allow the verification of arbitrary histories. However registers, the txn-cycle test finds write-read dependency cycles over read-write registers, and the append test uses appends of unique elements to lists. We include realtime dependencies (e.g. T1 com- pletes 1], and append(36, 5) to denote appending 5 to the current value of key 36. T1: r(34, [2 1]), append(36, 5), append(34, 4) T2: append(34, 5) T3: r(34, [2 1 5 4]) Because T1 did not see T2’s append of 5 to0 码力 | 9 页 | 141.29 KB | 6 月前3
pandas: powerful Python data analysis toolkit - 0.15the left argument (GH7737). • Previously an enlargement with a mixed-dtype frame would act unlike .append which will preserve dtypes (related GH2578, GH8176): In [108]: df = DataFrame([[True, 1],[False CustomBusinessDay.apply raiases NameError when np.datetime64 object is passed (GH7196) • Bug in MultiIndex.append, concat and pivot_table don’t preserve timezone (GH6606) • Bug in .loc with a list of indexers on ’A’] In [17]: dfi Out[17]: A B C 0 0 1 0 1 2 3 2 2 4 5 4 [3 rows x 3 columns] This is like an append operation. In [18]: dfi.loc[3] = 5 In [19]: dfi Out[19]: A B C 0 0 1 0 1.7. v0.13.0 (January0 码力 | 1579 页 | 9.15 MB | 1 年前3
Hello 算法 1.0.0b4 Golang版_ = make([]int, n) // 长度为 n 的列表占用 O(n) 空间 var nodes []*node for i := 0; i < n; i++ { nodes = append(nodes, newNode(i)) } // 长度为 n 的哈希表占用 O(n) 空间 m := make(map[int]string, n) for i := 0; i < n; list = append(list, 1) list = append(list, 3) list = append(list, 2) list = append(list, 5) list = append(list, 4) 4. 数组与链表 hello‑algo.com 63 /* 中间插入元素 */ list = append(list[:3], append([]int{6} append([]int{6}, list[3:]...)...) // 在索引 3 处插入数字 6 /* 删除元素 */ list = append(list[:3], list[4:]...) // 删除索引 3 处的元素 遍历列表。与数组一样,列表可以根据索引遍历,也可以直接遍历各元素。 // === File: list_test.go === /* 通过索引遍历列表 */ count := 0 for0 码力 | 347 页 | 27.40 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.15.1the left argument (GH7737). • Previously an enlargement with a mixed-dtype frame would act unlike .append which will preserve dtypes (related GH2578, GH8176): In [108]: df = DataFrame([[True, 1],[False CustomBusinessDay.apply raiases NameError when np.datetime64 object is passed (GH7196) • Bug in MultiIndex.append, concat and pivot_table don’t preserve timezone (GH6606) • Bug in .loc with a list of indexers on ’A’] In [17]: dfi Out[17]: A B C 0 0 1 0 1 2 3 2 2 4 5 4 [3 rows x 3 columns] This is like an append operation. In [18]: dfi.loc[3] = 5 In [19]: dfi Out[19]: A B C 0 0 1 0 1.6. v0.13.0 (January0 码力 | 1557 页 | 9.10 MB | 1 年前3
共 1000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 100













