Performance Lets dive into Performance issuesPerformance Lets dive into Performance issues. • Everything in JavaScript defaults to being on the same thread. Too much work on main thread • Android nested layouts • Functions and objects defined0 码力 | 15 页 | 1.71 MB | 1 年前3
Performance MattersPERFORMANCE MATTERS (joint work with Charlie Curtsinger, Grinnell College) emeryberger.com, @emeryberger Emery Berger College of Information and Computer Sciences UMASS AMHERSTA short time ago : un.bmp Ogle is too slow! OGLE’84 is too slow!Transistors (millions) Clock Speed (MHz) Performance used to be easy 0.001 0.01 0.1 1 10 100 1,000 10,000 1970 1975 1980 1985 1990 1995 gle loading… No mojitos for me… Back to the present…Transistors (millions) Clock Speed (MHz) Performance not easy anymore 0.001 0.01 0.1 1 10 100 1,000 10,000 1970 1975 1980 1985 1990 19950 码力 | 197 页 | 11.90 MB | 6 月前3
Moonshot AI 介绍MoonshotAI介绍 公司介绍 • 北京⽉之暗⾯科技有限公司(MoonshotAI)是⼀家专注于通⽤⼈⼯智能领域的公司。公司致⼒于 寻求将能源转化为智能的最优解,通过产品与⽤⼾共创智能,实现普惠AI。 • 成⽴时间:2023年3⽉1⽇ • 产品 ◦ Kimi智能助⼿(⽹⻚版:kimi.ai、App和⼩程序搜索“Kimi智能助⼿”即可),发布时间 2023年10⽉9⽇ 2023年10⽉9⽇ ◦ MoonshotAI开放平台(公测中https://platform.moonshot.cn/),发布时间2023年11⽉2⽇ • 欢迎关注公众号,了解更多动态 公司亮点 1.团队拥有世界级的⼈才密度: a. 创始⼈杨植麟是中国35岁以下NLP领域引⽤最⾼的研究者,Transformer-XL和XLNet两篇重要 论⽂的第⼀作者;两位联合创始⼈周昕宇和吴育 ⼤模型⽅⾯。团队成员发明了RoPE相对位置编码,是MetaLLaMa和GooglePALM等⼤多数 主流模型的重要组成部分;发明了groupnormalization,是StableDiffusion等AI模型成功 的关键组件;发明了Transformer-XL,是历史上第⼀个在词级别和字级别都全⾯超越RNN 的注意⼒语⾔模型,解决了语⾔建模上下⽂⻓度的关键问题,定义了语⾔建模的新标准;曾 与0 码力 | 74 页 | 1.64 MB | 1 年前3
OpenAI - AI in the EnterpriseAI in the Enterprise Lessons from seven frontier companiesContents A new way to work 3 Executive summary 5 Seven lessons for enterprise AI adoption Start with evals 6 Embed AI into your products models 13 Get AI in the hands of experts 16 Unblock your developers 18 Set bold automation goals 21 Conclusion 22 More resources 24 2 AI in the EnterpriseA new way to work As an AI research and complex, interconnected workflows and systems. We’re seeing AI deliver significant, measurable improvements on three fronts: 01 Workforce performance Helping people deliver higher-quality outputs in shorter0 码力 | 25 页 | 9.48 MB | 5 月前3
Performance of Apache Ozone on NVMePerformance of Apache Ozone on NVMe Wei-Chiu Chuang (jojochuang) Ritesh Shukla (kerneltime) Agenda • Overview of how Ozone and how it scales • Why NVME is important for Ozone for scaling • Benefits Benefits of using NVME • Impala performance results from NVME clusters • Write path improvements results from NVME clusters • Summary • Questions Ozone Architecture Why does Ozone Scale? Separation of Active - Standby Protocol Support Hadoop / S3 API Hadoop API Small objects are welcome Max performance reached at object size around 10-20 MB Hardware trends • Cloudera recommends Ozone’s metadata0 码力 | 34 页 | 2.21 MB | 1 年前3
TVM@Alibaba AI Labscooperatively fetch dependent data out_channel WwWly, pm Bly zx) https://docstvm ai/ PVR TOPI Alibaba ALLabs 阿里巴巴人工智能实验室 Blocking Splits the workload into thread blocks (work0 码力 | 12 页 | 1.94 MB | 5 月前3
Manus AI:Agent元年开启2025!3" Manus AI!Agent"#$ChatGPT%& #$% SAC NO. S0570519080006 | SFC NO. BQZ938 &'( SAC NO. S05701220801381 !"#$%&'() !"#$ • !"#$%&'()*AI+!"#$,-./012334%&'(56789:;<=>?@A BC%&'() • DEFGHI)*DEFGJKH abcde&fghi=>.gjklmno5pqLr?E=PstOuv5w%xyabz {|L}=>~}m•O2€.jk• • ‚ƒc„…†Agent…‡ˆAGIO‰Š‹Œ•1 Manus AI!"#$%&'Agent3 Manus AI%&'() • Manus !"#$%&'()*+,-./012345-6708,9):;<=>Manus ?@A+'BCDEFGHIJK,LMN OPQMR<"S>TUVWXY3 "#$%Bloomberg*&'()4 Manus AI%*+,- !"#$%Bloomberg*&'()5 Manus AI%./01 • GAIA !"#%‡•ž$% AI Ÿ G¡¢ž£,¤¥-UL6¦§¨©ª«Level 1cLevel 2cLevel 3¬G-•>Manus AI L®‰¯# §¨©ª°±²³{´µG SOTA œ=> • Manus AI ¶·fgG$%JKA+)€,¸¹!Lº»JK«Level0 码力 | 23 页 | 4.87 MB | 5 月前3
Performance Engineering: Being Friendly to Your HardwareBeing Friendly to Your Hardware Performance Engineering A gentle introduction to hardware for software engineers 2Where does C++ run? 3On an abstract C++ machine 4On an abstract C++ machine? In most practical cases at boot time only Same capacity, different composition => different performance profile From JESD 79-4 DDR4 specificationMemory • Memory system is in the uncore • Cores act Multiple instructions resulting in fewer operations • ISA restrictions may have impact to performance Imaginary ARM mov r20, 0x123456789abcdef0Register renaming 52 Branching Fetch Decode Queue0 码力 | 111 页 | 2.23 MB | 6 月前3
How GitOps Boosts
Business Performance:
The FactsWHITEPAPER How GitOps Boosts Business Performance: The Facts How GitOps Boosts Business Performance: The Facts 2 INTRODUCTION As cloud-native applications have become more prevalent, the concept competitive advantage with an increase in innovation. This positive effect is not limited to the performance of engineering teams. Technology, in particular cloud native technology like Kubernetes and its together six years of data drawn from over 31,000 technology professionals worldwide. It charts the performance of engineering teams across the world against four key measures: lead time for new features, failure0 码力 | 9 页 | 506.50 KB | 1 年前3
普通人学AI指南普通人学 AI 指南 作者:郭震 日期:2024 年 6 月 8 日 Contents 1 AI 大模型基础 4 1.1 AIGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 AGI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4.2 单位 B 和 T . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 AI 工具梳理 6 2.1 问答 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 ChatGPT . . . . . . . . . . 8 2.2.6 Midjourney . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 AI 视频工具 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.1 Sora (OpenAI 公司) . . . .0 码力 | 42 页 | 8.39 MB | 8 月前3
共 1000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 100













