积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(330)综合其他(163)Python(140)云计算&大数据(95)Weblate(90)PyWebIO(67)OpenShift(53)系统运维(48)区块链(48)数据库(40)

语言

全部中文(简体)(611)英语(66)中文(繁体)(16)中文(简体)(6)日语(2)西班牙语(1)法语(1)中文(繁体)(1)

格式

全部PDF文档 PDF(538)其他文档 其他(154)PPT文档 PPT(9)DOC文档 DOC(5)TXT文档 TXT(1)
 
本次搜索耗时 0.071 秒,为您找到相关结果约 707 个.
  • 全部
  • 后端开发
  • 综合其他
  • Python
  • 云计算&大数据
  • Weblate
  • PyWebIO
  • OpenShift
  • 系统运维
  • 区块链
  • 数据库
  • 全部
  • 中文(简体)
  • 英语
  • 中文(繁体)
  • 中文(简体)
  • 日语
  • 西班牙语
  • 法语
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • DOC文档 DOC
  • TXT文档 TXT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • text文档 00 Deepseek官方提示词

    AI】,回复【deepseek】获取 1. 万能提示词生成模版:根据用户需求,帮助生成高质量提示词 SYSTEM 你是一位大模型提示词生成专家,请根据用户的需求编写一个智能助手的提示词,来指导大模型进行内容生成, 要求: 1. 以 Markdown 格式输出 2. 贴合用户需求,描述智能助手的定位、能力、知识储备 3. 提示词应清晰、精确、易于理解,在保持质量的同时,尽可能简洁 4. 只输出提示词,不要输出多余解释 只输出提示词,不要输出多余解释 USER “ 请帮我生成一个 Linux ” 助手 的提示词 2. 文案大纲生成:根据用户提供的主题,来生成文案大纲 SYSTEM 你是一位文本大纲生成专家,擅长根据用户的需求创建一个有条理且易于扩展成完整文章的大纲,你拥有强大的 主题分析能力,能准确提取关键信息和核心要点。具备丰富的文案写作知识储备,熟悉各种文体和题材的文案大 纲构建方法。可根据不同的主题需求,如商业文案、文学创 理解和记忆,一 定要押韵,不要太过书面化。只输出宣传标语,不用解释。 USER ” “ 请生成 希腊酸奶 的宣传标语 12. 诗歌创作:让模型根据提示词,创作诗歌 USER 模仿李白的风格写一首七律.飞机 13. 散文写作:让模型根据提示词创作散文 USER 以孤独的夜行者为题写一篇 750 字的散文,描绘一个人在城市中夜晚漫无目的行走的心情与所见所感,以及夜的 寂静给予的独特感悟。
    0 码力 | 4 页 | 7.93 KB | 8 月前
    3
  • pdf文档 机器学习课程-温州大学-12深度学习-自然语言处理和词嵌入

    2023年05月 深度学习-自然语言处理和词嵌入 黄海广 副教授 2 03 Word2Vec 04 GloVe 本章目录 01 词汇表征和文本数据处理 02 词嵌入 05 GPT 3 1.词汇表征 01 词汇表征和文本数据处理 03 Word2Vec 04 GloVe 02 词嵌入 05 GPT 4 词汇表征和文本数据处理 8 2.词嵌入 03 Word2Vec 04 GloVe 02 词嵌入 05 GPT 01 词汇表征和文本数据处理 9 2.词嵌入 “Sally Johnson is an orange farmer.” “Robert Lin is an apple farmer.” 10 2.词嵌入 如何用词嵌入做迁移学习的步骤。 如何用词嵌入做迁移学习的步骤。 第一步,先从大量的文本集中学习词嵌入。 第二步,你可以用这些词嵌入模型把它迁移到你的新的只有少量标注训练集的任 务中,比如说用这个300维的词嵌入来表示你的单词。这样做的一个好处就是你 可以用更低维度的特征向量代替原来的10000维的one-hot向量,现在你可以用 一个300维更加紧凑的向量。 第三步,当你在你新的任务上训练模型时,在你的命名实体识别任务上,只有少 量的标记数
    0 码力 | 44 页 | 2.36 MB | 1 年前
    3
  • pdf文档 DeepSeek从入门到精通(20250204)

    发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务 强弱判断 并非全面更强,仅在其训练目标领域显著优于通用模型 通用场景更灵活,但专项任务需依赖提示语补偿能力 • 例如:GPT-3、GPT-4(OpenAI),BERT(Google),主要用于语言生成、语言理解、文本分类、翻译 等任务。 快思慢想:效能兼顾 全局视野 概率预测(快速反应模型,如ChatGPT 根据任务需求选择合 适的模型,实现最佳效果。 提示语策略差异 1 2 推理模型 通用模型 • 提示语更简洁,只需明确任务目标和 需求(因其已内化推理逻辑)。 • 无需逐步指导,模型自动生成结构化 推理过程(若强行拆解步骤,反而可 能限制其能力)。 • 需显式引导推理步骤(如通过CoT提 示),否则可能跳过关键逻辑。 • 依赖提示语补偿能力短板(如要求分 步思考、提供示例)。 模型选择 • 优先根据任务类型而非模型热度选择(如数学任务选推理模型,创意任务选通用 模型)。 提示语设计 • 推理模型:简洁指令,聚焦目标,信任其内化能力。(“要什么直接说”)。 • 通用模型:结构化、补偿性引导(“缺什么补什么”)。 避免误区 • 不要对推理模型使用“启发式”提示(如角色扮演),可能干扰其逻辑主线。 • 不要对通用模型“过度信任”(如直接询问复杂推理问题,需分步验证结果)。
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务 强弱判断 并非全面更强,仅在其训练目标领域显著优于通用模型 通用场景更灵活,但专项任务需依赖提示语补偿能力 • 例如:GPT-3、GPT-4(OpenAI),BERT(Google),主要用于语言生成、语言理解、文本分类、翻译 等任务。 快思慢想:效能兼顾 全局视野 概率预测(快速反应模型,如ChatGPT 根据任务需求选择合 适的模型,实现最佳效果。 提示语策略差异 1 2 推理模型 通用模型 • 提示语更简洁,只需明确任务目标和 需求(因其已内化推理逻辑)。 • 无需逐步指导,模型自动生成结构化 推理过程(若强行拆解步骤,反而可 能限制其能力)。 • 需显式引导推理步骤(如通过CoT提 示),否则可能跳过关键逻辑。 • 依赖提示语补偿能力短板(如要求分 步思考、提供示例)。 模型选择 • 优先根据任务类型而非模型热度选择(如数学任务选推理模型,创意任务选通用 模型)。 提示语设计 • 推理模型:简洁指令,聚焦目标,信任其内化能力。(“要什么直接说”)。 • 通用模型:结构化、补偿性引导(“缺什么补什么”)。 避免误区 • 不要对推理模型使用“启发式”提示(如角色扮演),可能干扰其逻辑主线。 • 不要对通用模型“过度信任”(如直接询问复杂推理问题,需分步验证结果)。
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 清华大学 普通人如何抓住DeepSeek红利

    社交障碍?DeepSeek教你“高情商”破局! ZXDWsPoPvNtNtNnQnPpMsP8O8QaQpNpPsQqNeRqQnPkPnMpM9PoOwOxNpNsPuOqQpN p 提示词驱动的新生产力 在AI时代,知识的获取成本趋近于零,拥有知识不再是核心竞争力。利用提示词创造知识,引领创新、明确 方向,成为社会与个人竞争力的关键。 p 选择中的再创造 面对AI提供的多种解法,人类需具备批判性思维与逻辑判断能力,通过选择最优答案,实现解决方案的创新 规避风险): p “假设园区占地500亩,日均处理包裹量50万件,请计算自动化分拣设备的配置数量,用表格展示。” p 模板复制:对同类章节(如3.1/3.2/3.3)使用相同指令模板,仅替换关键词。 p 强制格式:要求AI输出带编号小标题、分点、表格的内容,直接粘贴后即显“专业感”。 第三阶段:20分钟——用AI补全软性内容(目标:1000字) 填充“虚但必需”的部分: p 政策背书: 将AI生成内容插入对应章节,优先保证字数达标。 场景1:1小时内写完一个1万字的项目书 第四阶段:10分钟——用AI优化与格式伪装 p统一话术: “将以下段落改写成政府报告风格,加入‘数字化转型’‘双碳战略’等关键词:{粘贴原文}” p生成图表: 指令:“将上文‘设备配置表’转换成LaTeX格式的三线表。”插入图表后,自动增加方案“厚度”。 p最终润色: “检查以下方案书逻辑漏洞,列出3个可能被客户质疑的点,并给出应对答案。”
    0 码力 | 65 页 | 4.47 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    对数据进行诊断、预测、关联、聚类分析,常用于问题 定位、需求预测、推荐系统、异常检测等。 对数据进行分类、社交网络分析或时序模式挖掘,常用 于客户细分、信用评分、社交媒体营销、股价预测等。 将数据转化为统计图、热力图、网络关系图、词云、树形 图等,用于揭示数据中蕴含的模式、趋势、异常和洞见。 本质:以多agent实现从数据采集到可视全流程 模型特点 Claude 3.5 sonnet  平衡性能:在模型大小和 性能之间取得平衡,适合 据采集结果为空。 DeepSeek R1 能够提取所有网址并进行 筛选、去重,所撰写代码 运行后完成数据爬虫任务, 所获取数据准确,少量数 据有所遗漏。 提示词 测试结果受到数据样本、测试环境、AI抽卡、提示词模板等因素影响,仅供参考,无法作为决策制定、质量评估或产品验证的最终依据。 爬虫数据采集  目前DeepSeek R1、Open AI o3mini、Kimi k1 数据结果为空。 结论 Claude 3.5 sonnet 可以提取所有网址,调整后可输出正 确代码,运行代码能生成本地文件, 但提取数据结果为空。 测试结果受到数据样本、测试环境、AI抽卡、提示词模板等因素影响,仅供参考,无法作为决策制定、质量评估或产品验证的最终依据。 文件数据读取 1、读取文件; 2、根据指定内容整理成表格。 任务 Open AI o3mini 暂不支持附件上传,响应速度
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 动手学深度学习 v2.0

    1 读取数据集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 8.2.2 词元化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 8.2.3 词表 357 9.5.1 下载和预处理数据集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358 9.5.2 词元化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 9.5.3 词表 . . . . . . . . 378 10 注意力机制 381 10.1 注意力提示 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 10.1.1 生物学中的注意力提示 . . . . . . . . . . . . . . . . . . . . . .
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 普通人学AI指南

    . . . . . . . 11 2.5.3 SD 提示词手册 . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5.4 PromptHero . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5.5 可视化 AI 提示语 . . . . . . . . . . . . . 各个大型语言模型发布时间线 5 1.4 基础概念 1.4.1 上下文窗口 上下文窗口指的是模型一次可以处理的最大文本长度。这个长度通常用“to- kens”(标记)来表示,每个标记可以是一个单词、子词或单个字符,具体取决 于编码方式。 上下文窗口大小决定了模型在回答问题或生成文本时可以利用的上下文范 围。窗口越大,模型就能处理越长的上下文,对理解长文本内容非常重要。 较大的窗口允许模型处理更长的文本片段,从而提高在长文本任务中的表 T(万亿,Trillion):在英文里是 Trillion 的缩写,表示万亿。在 AI 大模型 中,”T” 常用来表示模型在训练中处理的 Token 数量。Token 是指模型处理的 基本单元,可以是一个单词、子词,或者字符等。 在大规模预训练语言模型的训练中,通常会提到模型是在多少个 Token 上 进行学习的,以表明模型的训练规模和数据量。例如:LLaMA3 语言模型使用 了超过 15T 个 token 进行训练。
    0 码力 | 42 页 | 8.39 MB | 8 月前
    3
  • epub文档 Weblate 4.6 用户文档

    projects you are watching are shown by default, and cross- referenced with your preferred languages. 提示 You can switch to different views using the navigation tabs. The menu has these options: Projects so keep this info accurate. 注解 All language selections only offer currently translated languages. 提示 Request or add other languages you want to translate by clicking the button to make them available 参见 组件列表 编辑者链接 A source code link is shown in the web-browser configured in the 组件配置 by default. 提示 By setting the Editor link, you use your local editor to open the VCS source code file of translated
    0 码力 | 760 页 | 9.22 MB | 1 年前
    3
  • epub文档 Weblate 4.6.2 用户文档

    projects you are watching are shown by default, and cross- referenced with your preferred languages. 提示 You can switch to different views using the navigation tabs. The menu has these options: Projects so keep this info accurate. 注解 All language selections only offer currently translated languages. 提示 Request or add other languages you want to translate by clicking the button to make them available 参见 组件列表 编辑者链接 A source code link is shown in the web-browser configured in the 组件配置 by default. 提示 By setting the Editor link, you use your local editor to open the VCS source code file of translated
    0 码力 | 762 页 | 9.22 MB | 1 年前
    3
共 707 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 71
前往
页
相关搜索词
00Deepseek官方提示机器学习课程温州大学12深度自然语言自然语言处理嵌入DeepSeek入门精通20250204清华华大清华大学普通通人普通人如何抓住红利DeepResearch科研动手v2AI指南Weblate4.6用户文档用户文档
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩