积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(815)云计算&大数据(434)综合其他(229)Python(208)系统运维(174)数据库(157)机器学习(136)Go(98)UML(98)Weblate(90)

语言

全部中文(简体)(1607)英语(112)中文(繁体)(36)日语(22)中文(简体)(18)西班牙语(14)法语(13)德语(12)韩语(12)

格式

全部PDF文档 PDF(1655)其他文档 其他(187)PPT文档 PPT(41)DOC文档 DOC(5)TXT文档 TXT(1)
 
本次搜索耗时 0.042 秒,为您找到相关结果约 1000 个.
  • 全部
  • 后端开发
  • 云计算&大数据
  • 综合其他
  • Python
  • 系统运维
  • 数据库
  • 机器学习
  • Go
  • UML
  • Weblate
  • 全部
  • 中文(简体)
  • 英语
  • 中文(繁体)
  • 日语
  • 中文(简体)
  • 西班牙语
  • 法语
  • 德语
  • 韩语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • DOC文档 DOC
  • TXT文档 TXT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Keras: 基于 Python 的深度学习库

    Keras: 基于 Python 的深度学习库 Keras: The Python Deep Learning library* Author: Keras-Team Contributor: 万 震 (WAN Zhen) � wanzhenchn � wanzhen@cqu.edu.cn 2018 年 12 月 24 日 *Copyright © 2018 by Keras-Team 言 整理 Keras: 基于 Python 的深度学习库 PDF 版的主要原因在于学习 Keras 深度学习库时方 便本地查阅,下载最新 PDF 版本请访问: https://github.com/wanzhenchn/keras-docs-zh。 感谢 keras-team 所做的中文翻译工作,本文档制作基于此处。 严正声明:本文档可免费用于学习和科学研究,可自由传播,但切勿擅自用于商业用途,由 Otherwise, the contributor is not responsible for the consequences. 目录 I 目录 1 Keras: 基于 Python 的深度学习库 1 1.1 你恰好发现了 Keras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 DeepSeek图解10页PDF

    . . . . . . . . . . . . . . . . . 7 2.3.2 监督微调(Supervised Fine-Tuning, SFT) . . . . . . 7 2.3.3 强化学习(Reinforcement Learning, RL) . . . . . . . 7 3 DeepSeek-R1 精华图解 . . . . . . . . . . . . . . . . . 7 3.1.1 核心创新 1:含 R1-Zero 的中间推理模型 . . . . . . . 8 3.1.2 核心创新 2:通用强化学习 . . . . . . . . . . . . . . . 8 3.2 含 R1-Zero 的中间推理模型训练过程 . . . . . . . . . . . . . . 9 3.3 通用强化学习训练过程 . . . . . . . . . . . . DeepSeek)具有多个重要的优势,比如: 1. 保护隐私与数据安全。数据不外传:本地运行模型可以完全避免数据上 传至云端,确保敏感信息不被第三方访问。 2. 可定制化与优化。支持微调(Fine-tuning):可以根据特定业务需求对模 型进行微调,以适应特定任务,如行业术语、企业内部知识库等。 3. 离线运行,适用于无网络环境。可在离线环境下运行:适用于无互联网 连接或网络受限的场景。提高系统稳定性:即使云服务宕机,本地大模型依
    0 码力 | 11 页 | 2.64 MB | 8 月前
    3
  • pdf文档 机器学习课程-温州大学-02深度学习-神经网络的编程基础

    1 2023年03月 深度学习-神经网络的编程基础 黄海广 副教授 2 本章目录 01 二分类与逻辑回归 02 梯度下降 03 计算图 04 向量化 3 1.二分类与逻辑回归 02 梯度下降 01 二分类与逻辑回归 03 计算图 04 向量化 4 符号定义 ?:表示一个??维数据,为输入数 据,维度为(??, 1); )]:表示所有的训 练数据集的输入值,放在一个 ?? × ?的矩 阵中,其中?表示样本数目; ? = [?(1), ?(2), . . . , ?(?)]:对应表示所有 训练数据集的输出值,维度为1 × ?。 5 逻辑回归 Logistic Regression 经典的分类算法,简单、有效, 目前用到最多的机器学习分类算法之一。 ? ? 代表一个常用的逻辑函数(logistic function) 合起来,我们得到逻辑回归模型的假设函数: 当? ? 大于等于0.5时,预测 y=1 当? ? 小于0.5时,预测 y=0 sigmoid 函数 ?=??? + ? ൯ ? ̰? , ? = −?log(̰?) − (1 − ?)log(1 − ̰? 6 逻辑回归 损失函数 ൯ ? ̰? , ? = −?log(̰?) − (1 − ?)log(1 − ̰? 为了衡量算法在全部训练样本上的表现如何,我们需要定义一个算法的代价函
    0 码力 | 27 页 | 1.54 MB | 1 年前
    3
  • pdf文档 Moonshot AI 介绍

    MoonshotAI介绍 公司介绍 • 北京⽉之暗⾯科技有限公司(MoonshotAI)是⼀家专注于通⽤⼈⼯智能领域的公司。公司致⼒于 寻求将能源转化为智能的最优解,通过产品与⽤⼾共创智能,实现普惠AI。 • 成⽴时间:2023年3⽉1⽇ • 产品 ◦ Kimi智能助⼿(⽹⻚版:kimi.ai、App和⼩程序搜索“Kimi智能助⼿”即可),发布时间 2023年10⽉9⽇ 公司亮点 1.团队拥有世界级的⼈才密度: a. 创始⼈杨植麟是中国35岁以下NLP领域引⽤最⾼的研究者,Transformer-XL和XLNet两篇重要 论⽂的第⼀作者;两位联合创始⼈周昕宇和吴育昕都有10000+的GoogleScholar引⽤。 b. 团队成员囊括NLP,CV,RL(强化学习),Infra⽅⾯新⽣代⼈才,主导了很多有世界影响⼒的⼯ 作,吸引了来⾃Goo n等全球领先科技公司的海外⼈才加⼊: i. ⼤模型⽅⾯。团队成员发明了RoPE相对位置编码,是MetaLLaMa和GooglePALM等⼤多数 主流模型的重要组成部分;发明了groupnormalization,是StableDiffusion等AI模型成功 的关键组件;发明了Transformer-XL,是历史上第⼀个在词级别和字级别都全⾯超越RNN 的注意⼒语⾔模型,解决了
    0 码力 | 74 页 | 1.64 MB | 1 年前
    3
  • pdf文档 DeepSeek从入门到精通(20250204)

    DeepSeek是一家专注通用人工智能(AGI)的中国科技公司,主攻大模型研发与应 用。 • DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。 Deepseek可以做什么? 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场景, 支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 文本生成 表格、列表生成(如日程安排、菜谱) 社交媒体内容(如推文、帖子) 剧本或对话设计 文本创作 长文本摘要(论文、报告) 文本简化(降低复杂度) 多语言翻译与本地化 摘要与改写 02 01 03 文本生成 自然语言理解与分析 知识推理 知识推理 逻辑问题解答(数学、常识推 理) 因果分析(事件关联性) 语义分析 语义解析 情感分析(评论、反馈) 意图识别(客服对话、用户查询) 实体提取(人名、地点、事件) 文本分类 当人人都会用AI时,你如何用得更好更出彩? 推理模型 • 例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务,非推理大模型一般侧重于语言生成、上下文理解和自然语言处理,而不强
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    DeepSeek是一家专注通用人工智能(AGI)的中国科技公司,主攻大模型研发与应 用。 • DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。 Deepseek可以做什么? 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场景, 支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 文本生成 表格、列表生成(如日程安排、菜谱) 社交媒体内容(如推文、帖子) 剧本或对话设计 文本创作 长文本摘要(论文、报告) 文本简化(降低复杂度) 多语言翻译与本地化 摘要与改写 02 01 03 文本生成 自然语言理解与分析 知识推理 知识推理 逻辑问题解答(数学、常识推 理) 因果分析(事件关联性) 语义分析 语义解析 情感分析(评论、反馈) 意图识别(客服对话、用户查询) 实体提取(人名、地点、事件) 文本分类 当人人都会用AI时,你如何用得更好更出彩? 推理模型 • 例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务,非推理大模型一般侧重于语言生成、上下文理解和自然语言处理,而不强
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 谭国富:深度学习在图像审核的应用

    深度学习在图像审核的应用 腾讯优图实验室 谭国富 http://open.youtu.qq.com SACC2017 优图团队立足于社交网络大平台,借助社交业务积累 的海量人脸、图片、音乐等数据,专注在人脸、图像、 音乐、语音、机器学习等领域开展技术研究,并积极 推动研究成果在业务中落地产生价值。 关于优图实验室 人脸识别 图像识别 音频识别 SACC2017 目录 01 腾讯优图内容审核能力介绍 腾讯优图内容审核能力介绍 02 深度学习技术介绍 03 内容审核的扩展和延伸 00 图像审核的行业背景 SACC2017 内容审核 - 行业现状 不良信息泛滥,监管猝不及防 Ø 随着互联网的飞速发展和信息量的猛增, 大量的色情图片、暴力等不良信息夹杂其 中,严重影响着互联网的健康发展。 Ø 直播行业的快速兴起,使得视频中不良信 息含量更加迅猛增长,色情暴力等不雅视 频频繁流出,导致各网络直播平台面临危 频频繁流出,导致各网络直播平台面临危 机。 Ø 内容监管日趋严格, 2017年上半年,各 大直播行业协会相应成立,行业平台自我 规范的同时,网信办、文化部等国家部门 对于直播行业监管也越发严格,几乎所有 知名的直播平台均被有关部门点名查处过, 特别2017 年月中旬,黄鳝事件引爆网络, 让色情直播再度被推上舆论浪尖。 微信朋友圈日上传图片10亿张,视频播放20亿次 4000亿QQ空间存量图片,每天空间相册新增6亿
    0 码力 | 32 页 | 5.17 MB | 1 年前
    3
  • pdf文档 深度学习在电子商务中的应用

    1 深度学习在电商搜索和聊天机器人中的应用 探索 SPEAKER / 程进兴 2017年4月 2 3 苏宁国际美国硅谷研究院 苏宁美国硅谷研究院创 建于2013年11月,其宗旨是建立 高科技人才和专利的蓄水池,推 动苏宁持续地创新和转型,为用 户提供简约完美的用户体验。 硅谷研究院由来自云计 算、大数据、人工智能及深度学 习等不同专业背景的工程师、数 据科学家及分析师组成。目前包 数 据分析,机器学习,人工智能应用等方面的研发 工作。在此期间,发表了10多篇相关领域的研究 论文,并有10多项相关领域的专利。  业余爱好: 骑行 个人简介 电子邮箱: jim.cheng@ususing.com 5 议程 • 深度学习与商品搜索  矢量化搜索技术简介  基于词语聚类的矢量化  基于用户会话的矢量化  原型评测结果及效果示例 • 深度学习与聊天机器人  聊天机器人主要模块及架构  深度学习探索  聊天机器人评测结果 6 • 语义词汇差异  理发器, 理发推子, 电推子  血糖计, 血糖仪  山地车,死飞,自行车,碟刹,折叠车,公路车, 单车 • 解决方案  同义词 ?  归一化 ? 預報 =》预报, 五岁 =》 5岁 目前商品搜索中的一些问题 7 人工智能/深度学习在搜索中的应用:网页/电商搜索 • 基于深度学习的(Query, D
    0 码力 | 27 页 | 1.98 MB | 1 年前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    图等,用于揭示数据中蕴含的模式、趋势、异常和洞见。 本质:以多agent实现从数据采集到可视全流程 模型特点 Claude 3.5 sonnet  平衡性能:在模型大小和 性能之间取得平衡,适合 中等规模任务。  多模态支持:支持文本和 图像处理,扩展应用场景。  可解释性:注重模型输出 的可解释性和透明性。 DeepSeek R1  高效推理:专注于低延迟和 高吞吐量,适合实时应用。 长文本处理:擅长处理长文本 和复杂文档,适合专业场景。  定制化能力:支持用户自定义 训练和微调,适应特定需求。 Open AI o3 mini  小型化设计:轻量级模型, 适合资源有限的环境。  快速响应:优化推理速度, 适合实时交互场景。  通用性强:适用于多种自 然语言处理任务,如对话 生成和文本理解。 爬虫数据采集 1、阅读网页源代码,提取特定网页内容; 2、撰写python脚本; 任务 你需要完成以下两个任务: 1.阅读网页【网址】源代码【对应网页源代码】。提取所 有包含“春运2025丨X月X日,全社会跨区域人员流动量完 成X万人次”的网址进行去重、筛选,合并成网址列表 2.撰写python脚本,基于步骤1输出的网址列表提取所有网 址内容“截至目前 2025 年春运(2025年1月14日到2月8日) 相关数据(如日期、全社会跨区域人员流动量、铁路客运 量、公路人员流动量、水路客运量、民航客运量等)”完
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 2020美团技术年货 算法篇

    Augur 的建设与实践 1 Transformer 在美团搜索排序中的实践 23 BERT 在美团搜索核心排序的探索和实践 36 美团智能配送系统的运筹优化实战 60 一站式机器学习平台建设实践 77 美团搜索中 NER 技术的探索与实践 92 KDD Cup 2020 Debiasing 比赛冠军技术方案及在美团的实践 113 ICRA 2020 轨迹预测竞赛冠军的方法总结 132 KDD Cup 2020 AutoGraph 比赛冠军技术方案及在美团的实践 141 KDD Cup 2020 多模态召回比赛亚军方案与搜索业务应用 161 CIKM 2020 | 一文详解美团 6 篇精选论文 179 MT-BERT 在文本检索任务中的实践 192 美团无人车引擎在仿真中的实践 204 美团无人配送 CVPR2020 论文 CenterMask 解读 美团内部讲座|清华大学莫一林:信息物理系统中的安全控制算法 235 KDD Cup 2020 多模态召回比赛季军方案与搜索业务应用 252 对话任务中的“语言 - 视觉”信息融合研究 267 ICDM 论文:探索跨会话信息感知的推荐模型 278 自然场景人脸检测技术实践 289 技术解析 | 横纵一体的无人车控制方案 304 目录 智能搜索模型预估框架 Augur 的建设与实践 作者:朱敏
    0 码力 | 317 页 | 16.57 MB | 1 年前
    3
共 1000 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
Keras基于Python深度学习DeepSeek图解10PDF机器课程温州大学02神经网络神经网神经网络编程基础MoonshotAI介绍入门精通20250204清华华大清华大学国富图像审核应用电子商务电子商务DeepResearch科研2020美团技术年货算法
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩