积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(469)云计算&大数据(286)综合其他(178)Python(167)机器学习(132)系统运维(110)Weblate(90)数据库(88)PyWebIO(67)OpenShift(58)

语言

全部中文(简体)(1058)英语(80)中文(简体)(16)西班牙语(2)JavaScript(1)法语(1)zh-cn(1)

格式

全部PDF文档 PDF(966)其他文档 其他(180)PPT文档 PPT(23)DOC文档 DOC(3)
 
本次搜索耗时 0.019 秒,为您找到相关结果约 1000 个.
  • 全部
  • 后端开发
  • 云计算&大数据
  • 综合其他
  • Python
  • 机器学习
  • 系统运维
  • Weblate
  • 数据库
  • PyWebIO
  • OpenShift
  • 全部
  • 中文(简体)
  • 英语
  • 中文(简体)
  • 西班牙语
  • JavaScript
  • 法语
  • zh-cn
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 微博在线机器学习和深度学习实践-黄波

    微博在线机器学习和深度学习实践 黄波 @黄波_WB 资深技术专家 2019.5 目录 1.推荐篇 2.平台篇 3.总结篇 1 目录 • 推荐场景 • 推荐 • 在线机器学习 • 深度学习 • 平台背景 • 平台架构 • 平台效果 • 微博技术里程碑 • 微博业务生态 推荐篇 APPLICATION 推荐场景、在线机器学习和深度学习 11 1 推荐场景 • 荐感兴趣的对象集 • 模型: • 趋势 • 实时化:在线机器学习 • 深度化:深度学习 • 平台化:机器学习平台 2 推荐 • 实时化 • 特征实时化:更及时反馈用户行为,更细粒度刻画用户 • 模型实时化:根据线上样本实时训练模型,及时地反映对象的线上变化 模型推理 预测服务 实时特征 实时数据 3 在线机器学习 实时样本 实时模型训练 实时更新参数 Task 训练预处理 Node 在线模型训练 Node 离线样本拼接 Node 在线模型评估 Node 模型上线 Node 实时特征处理 Node 离线特征处理 Task Kafka输入 input process process output WeiFlow 工作流 Task 模型训练 Task 模型训练 Task Metrics输出 3 在线机器学习-工作流 互动行为日志
    0 码力 | 36 页 | 16.69 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-05机器学习-机器学习实践

    1 2022年02月 机器学习-机器学习实践 黄海广 副教授 2 01 数据集划分 02 评价指标 03 正则化、偏差和方差 本章目录 3 01 数据集划分 02 评价指标 1.数据集划分 03 正则化、偏差和方差 4 训练集(Training Set):帮助我们训练模型,简单的说就是通过 训练集的数据让我们确定拟合曲线的参数。 及确定的, 用来辅助我们的模型的构建,即训练超参数,可选; 测试集(Test Set): 为了测试已经训练好的模型的精确度。 三者划分:训练集、验证集、测试集 机器学习:60%,20%,20%;70%,10%,20% 深度学习:98%,1%,1% (假设百万条数据) 1.数据集划分 数据集 训练集 验证集 测试集 5 交叉验证 1. 使用训练集训练出k个模型 2. 用k个模型分别对交叉验证集计算得 3. 选取代价函数值最小的模型 4. 用步骤3中选出的模型对测试集计算得出 推广误差(代价函数的值) 6 数据不平衡是指数据集中各类样本数量不均衡的情况. 常用不平衡处理方法有采样和代价敏感学习 采样欠采样、过采样和综合采样的方法 不平衡数据的处理 7 SMOTE(Synthetic Minority Over-sampling Technique)算法是过采样 中比较常用的一种。算
    0 码力 | 33 页 | 2.14 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-08机器学习-集成学习

    1 2022年12月 机器学习-集成学习 黄海广 副教授 2 本章目录 01 集成学习方法概述 02 AdaBoost和GBDT算法 03 XGBoost 04 LightGBM 3 1.集成学习方法概述 01 集成学习方法概述 02 AdaBoost和GBDT算法 03 XGBoost 04 LightGBM 4 Bagging 结果进行综合产生最终的预测结果: 集成学习 模型n …… 模型1 模型2 预测n …… 预测1 预测2 训练 数据 最终 预测 结果 测试 数据 5 Boosting 训练过程为阶梯状,基模型 按次序一一进行训练(实现 上可以做到并行),基模型 的训练集按照某种策略每次 都进行一定的转化。对所有 基模型预测的结果进行线性 综合产生最终的预测结果。 集成学习 模型n 最终 预测 预测 结果 模型2 预测n …… 预测1 预测2 转化 模型1 模型3 转化 转化 训练 数据 测试 数据 6 集成学习 模型n …… 模型1 模型2 预测n …… 预测1 预测2 训练 数据 第二 层数 据 Stacking 最终 预测 结果 Stacking 将训练好的所有基模型对训练基进行预测,第j个基模型对第i个训练样本的预测值将作为新的训
    0 码力 | 50 页 | 2.03 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-02机器学习-回归

    1 2022年09月 机器学习-第二章 回归 黄海广 副教授 2 本章目录 01 线性回归 02 梯度下降 03 正则化 04 回归的评价指标 3 1. 线性回归 01 认识Python 01 线性回归 02 梯度下降 03 正则化 04 回归的评价指标 4 监督学习分为回归和分类 ✓ 回归(Regression、Prediction) ? 代表训练集中样本的数量 ? 代表特征的数量 ? 代表特征/输入变量 ? 代表目标变量/输出变量 ?, ? 代表训练集中的样本 (?(?), ?(?)) 代表第?个观察样本 ℎ 代表学习算法的解决方案或函 数也称为假设(hypothesis) ෝ? = ℎ(?),代表预测的值 ? ? 是特征矩阵中的第?行,是一个向量。 上图的: ?? ? 代表特征矩阵中第 ? 行的第 ? 0?0 + ?1?1 + ?2?2+. . . +????=?T? 注意:若表达式 ℎ ? = ?0 + ?1?1 + ?2?2+. . . +???? + ?, 则?可以融入到?0 模型 机器学习算法 训练数据 特征 预测结果 8 线性回归-算法流程 ℎ ? = ?0 + ?1?1 + ?2?2 + . . . +???? 要找到一组 ?(?0, ?1, ?2, . . .
    0 码力 | 33 页 | 1.50 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01机器学习-引言

    2022年02月 机器学习-引言 黄海广 副教授 2 目录 01 机器学习概述 02 机器学习的类型 03 机器学习的背景知识 04 机器学习的开发流程 3 1. 机器学习概述 01 认识Python 01 机器学习概述 02 机器学习的类型 03 机器学习的背景知识 04 机器学习的开发流程 4 机器学习与人工智能、深度学习的关系 人工智能:机器展现的人类智能 人工智能:机器展现的人类智能 机器学习:计算机利用已有的数 据(经验),得出了某种模型,并利 用此模型预测未来的一种方法。 深度学习:实现机器学习的一种 技术 人工智能 机器学习 深度学习 5 杨立昆(Yann LeCun) 杰弗里·欣顿(Geoffrey Hinton) 本吉奥( Bengio ) 共同获得了2018年计算机科学的最高奖项 ——ACM图灵奖。 机器学习界的执牛耳者 出科学家,CCF 高级会员。 代表作:《统计学习方法》 机器学习界的国内泰斗 周志华,南京大学计算机科学与技 术系主任 、人工智能学院院长。 代表作:《机器学习》(西瓜书) 7 陈天奇,陈天奇是机器学习领域著名的青 年华人学者之一,本科毕业于上海交通 大学ACM班,博士毕业于华盛顿大学计 算机系。 主要贡献:设计了XGBoost算法。 机器学习界的青年才俊 何恺明,本科就读于清华大学,博士毕业于
    0 码力 | 78 页 | 3.69 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-机器学习项目流程

    1 2021年06月 机器学习-机器学习项目流程 黄海广 副教授 2 本章目录 01 机器学习项目流程概述 02 数据清洗 03 特征工程 04 数据建模 3 1.机器学习项目流程概述 01 机器学习项目流程概述 02 数据清洗 03 特征工程 04 数据建模 4 机器学习的一般步骤 5 机器学习的一般步骤 数据搜集 数据清洗 数据清洗 特征工程 数据建模 6 机器学习的一般步骤 数据搜集 数据清洗 特征工程 数据建模 • 基于性能指标比较几种机 器学习模型 • 对最佳模型执行超参数调 整 • 在测试集上评估最佳模型 • 解释模型结果 • 得出结论 • 数据清理和格式化 • 探索性数据分析(EDA) • 特征工程 • 特征选择 • 网络下载 • 网络爬虫 • 数据库读取 • 开放数据 • • …… 7 2.数据清洗 01 机器学习项目流程概述 02 数据清洗 03 特征工程 04 数据建模 8 2.数据清洗 什么是数据清洗? 数据清洗是指发现并纠正数据文件中可识别的错误的最后一道程序,包 括检查数据一致性,处理无效值和缺失值等。与问卷审核不同,录入后 的数据清理一般是由计算机而不是人工完成。 9 2.数据清洗 不合法值 空 值 异常检测
    0 码力 | 26 页 | 1.53 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-11机器学习-降维

    1 2022年02月 机器学习-降维 黄海广 副教授 2 本章目录 01 降维概述 02 SVD(奇异值分解) 03 PCA(主成分分析) 3 1.降维概述 01 降维概述 02 SVD(奇异值分解) 03 PCA(主成分分析) 4 1.降维概述 维数灾难(Curse of Dimensionality):通常是指在涉及到向量的计算的问题 中,随着维数的增加,计算量呈指数倍增长的一种现象。 在很多机器学习问题中,训练集中的每条数据经常伴随着上千、甚至上万 个特征。要处理这所有的特征的话,不仅会让训练非常缓慢,还会极大增 加搜寻良好解决方案的困难。这个问题就是我们常说的维数灾难。 5 1.降维概述 维数灾难 维数灾难涉及数字分析、抽样、组合、机器学习、数据挖掘和数据库等诸 多领域。在机器学习的建模过程中,通常指的是随着特征数量的增多,计 计 算量会变得很大,如特征达到上亿维的话,在进行计算的时候是算不出来 的。有的时候,维度太大也会导致机器学习性能的下降,并不是特征维度 越大越好,模型的性能会随着特征的增加先上升后下降。 6 1.降维概述 什么是降维? 降维(Dimensionality Reduction)是将训练数据中的样本(实例)从高 维空间转换到低维空间,该过程与信息论中有损压缩概念密切相 关。同时要明白的,不存在完全无损的降维。
    0 码力 | 51 页 | 3.14 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-10机器学习-聚类

    2023年04月 机器学习-聚类 黄海广 副教授 2 本章目录 01 无监督学习概述 02 K-means聚类 03 密度聚类和层次聚类 04 聚类的评价指标 3 1.无监督学习概述 01 无监督学习概述 02 K-means聚类 03 密度聚类和层次聚类 04 聚类的评价指标 4 1.无监督学习方法概述 监督学习 在一个典型的监督学习中,训练集有标签 在一个典型的监督学习中,训练集有标签? ,我们的目标是找到能够 区分正样本和负样本的决策边界,需要据此拟合一个假设函数。 无监督学习 与此不同的是,在无监督学习中,我们的数据没有附带任何标签?,无 监督学习主要分为聚类、降维、关联规则、推荐系统等方面。 监督学习和无监督学习的区别 5 1.无监督学习方法概述 ✓ 聚类(Clustering) ✓ 如何将教室里的学生按爱好、身高划分为5类? ✓ 什么商品呢? 主要的无监督学习方法 6 1.无监督学习方法概述 主要算法 K-means、密度聚类、层次聚类 聚类 主要应用 市场细分、文档聚类、图像分割、图像压缩、聚类分析、特征学习或者词 典学习、确定犯罪易发地区、保险欺诈检测、公共交通数据分析、IT资产 集群、客户细分、识别癌症数据、搜索引擎应用、医疗应用、药物活性预 测…… 7 1.无监督学习方法概述 聚类案例 1
    0 码力 | 48 页 | 2.59 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-06机器学习-KNN算法

    1 2021年04月 机器学习-KNN算法 黄海广 副教授 2 01 距离度量 02 KNN算法 本章目录 03 KD树划分 04 KD树搜索 3 01 距离度量 02 KNN算法 03 KD树划分 04 KD树搜索 1.距离度量 4 距离度量 欧氏距离(Euclidean distance) ? ?, ? = ෍ KNN算法 03 KD树划分 04 KD树搜索 2.KNN算法 11 2.KNN算法 ?近邻法(k-Nearest Neighbor,kNN)是一种比较成熟也是最简单的机器学习算 法,可以用于基本的分类与回归方法。 算法的主要思路: 如果一个样本在特征空间中与?个实例最为相似(即特征空间中最邻近),那么这? 个实例中大多数属于哪个类别,则该样本也属于这个类别。 对于回归问题:对新的样本,根据其?个最近邻的训练样本标签值的均值作为预 测值。 12 2.KNN算法 ?近邻法(k-Nearest Neighbor,kNN)是一种比较成熟也是 最简单的机器学习算法,可以用于基本的分类与回归方法。 ?近邻法的三要素: • ?值选择。 • 距离度量。 • 决策规则。 13 2.KNN算法 算法流程如下: 1.计算测试对象到训练集中每个对象的距离
    0 码力 | 26 页 | 1.60 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-03机器学习-逻辑回归

    1 2022年02月 机器学习-逻辑回归 黄海广 副教授 2 本章目录 01 分类问题 02 Sigmoid函数 03 逻辑回归求解 04 逻辑回归代码实现 3 1.分类问题 01 分类问题 02 Sigmoid函数 03 逻辑回归求解 04 逻辑回归代码实现 4 监督学习的最主要类型 ✓ 分类(Classification) Machine Learning[EB/OL]. Stanford University,2014. https://www.coursera.org/course/ml [3] 李航. 统计学习方法[M]. 北京: 清华大学出版社,2019. [4] Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning[M]
    0 码力 | 23 页 | 1.20 MB | 1 年前
    3
共 1000 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
微博在线机器学习深度实践黄波课程温州大学0508集成02回归01引言项目流程11降维10聚类06KNN算法03逻辑
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩