积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(434)综合其他(218)Python(196)云计算&大数据(176)Weblate(163)数据库(162)C++(96)VirtualBox(84)Conan(74)数据库工具(61)

语言

全部英语(918)中文(简体)(96)中文(繁体)(18)英语(6)日语(2)韩语(2)德语(1)西班牙语(1)法语(1)

格式

全部PDF文档 PDF(774)其他文档 其他(267)DOC文档 DOC(6)PPT文档 PPT(1)
 
本次搜索耗时 0.031 秒,为您找到相关结果约 1000 个.
  • 全部
  • 后端开发
  • 综合其他
  • Python
  • 云计算&大数据
  • Weblate
  • 数据库
  • C++
  • VirtualBox
  • Conan
  • 数据库工具
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 英语
  • 日语
  • 韩语
  • 德语
  • 西班牙语
  • 法语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • DOC文档 DOC
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 The Goal - A Process of Ongoing Improvement

    The Goal - A Process of Ongoing Improvement Plot Summary Alex Rogo is a harried plant manager working ever more desperately to try improve performance. His factory is rapidly heading for disaster the market faster, we get an advantage in the marketplace. Process of on-going improvement “Everywhere, improvement was interpreted as almost synonymous to cost savings. People are concentrating on
    0 码力 | 6 页 | 100.81 KB | 5 月前
    3
  • pdf文档 Adventures with Legacy Codebases: Tales of Incremental Improvement

    ● Other flag dances ● Dummy dynamic library to generate static libs NO LTOSummaryIncremental improvement ● Focus on improving new code; donʼt fix everything ● Incrementally adopt clang-format (clang-format-diff)
    0 码力 | 77 页 | 4.34 MB | 6 月前
    3
  • pdf文档 Go on GPU

    fundamental compute unit for many modern scientific computation, it is also a classic performance improvement problem to solve. Example: Feedforward propagation in neural network is done via matrix multiplication; fundamental compute unit for many modern scientific computation, it is also a classic performance improvement problem to solve. Example: Feedforward propagation in neural network is done via matrix multiplication; fundamental compute unit for many modern scientific computation, it is also a classic performance improvement problem to solve. Example: Feedforward propagation in neural network is done via matrix multiplication;
    0 码力 | 57 页 | 4.62 MB | 1 年前
    3
  • epub文档 Apache Kyuubi 1.6.1 Documentation

    Kyuubi relies on Apache Spark to provide high-performance data query capabilities, and every improvement in the engine’s capabilities can help Kyuubi’s performance make a qualitative leap. Besides, Kyuubi Compared with HiveServer2, the most significant advantage of the first two should be the performance improvement. From the perspective of SQL syntax compatibility, Kyuubi and Spark Thrift Server are fully compatible Get Involved In the process of using Apache Kyuubi, if you have any questions, suggestions, or improvement ideas, you can participate in the Kyuubi community building through the following suggested channels
    0 码力 | 401 页 | 5.42 MB | 1 年前
    3
  • epub文档 Apache Kyuubi 1.6.0 Documentation

    Kyuubi relies on Apache Spark to provide high-performance data query capabilities, and every improvement in the engine’s capabilities can help Kyuubi’s performance make a qualitative leap. Besides, Kyuubi Compared with HiveServer2, the most significant advantage of the first two should be the performance improvement. From the perspective of SQL syntax compatibility, Kyuubi and Spark Thrift Server are fully compatible Get Involved In the process of using Apache Kyuubi, if you have any questions, suggestions, or improvement ideas, you can participate in the Kyuubi community building through the following suggested channels
    0 码力 | 391 页 | 5.41 MB | 1 年前
    3
  • pdf文档 Cooperative C++ Evolution

    What if we could do “C++11 feels like a new language” again, for the whole language?5 Major improvement via directed evolution 10 simpler metric: 90% of today’s guidance not needed 50 safer incremental evolution-as-usual plan Default for existing evolution JS & other examples “10” improvement, leap-forward plan 10% 10 Status quo language (e.g., JavaScript, C++, Objective-C) C++ examples incremental evolution-as-usual plan Default for existing evolution JS & other examples “10” improvement, leap-forward plan 10% 10 Status quo language (e.g., JavaScript, C++, Objective-C) C++ examples
    0 码力 | 85 页 | 5.73 MB | 6 月前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    model to be considered feasible for deployment is a classification accuracy of 80%. Any additional improvement is not required, and we would prefer to choose the smallest model with best performance that meets as techniques that help you improve your model footprint. However, given that they lead to an improvement in quality metrics, we can use them to boost the performance of models that might have not been v/s epoch plot with the augmented data is shown in figure 3-6. The augmented run shows a clear improvement in validation accuracy throughout the training run. You must be wondering, how to revert to epoch
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 Using Modern C++ to Build XOffsetDatastructure

    time required for these operations is almost zero. This represents a significant performance improvement over traditional serialization methods. Fanchen Su, XOffsetDatastructure, CppCon 2024 69 Algorithms implementation, we've chosen to use a Custom Allocator for two primary reasons: • Performance Improvement: • Our custom allocator is designed to provide faster allocations and deallocations compared implementation, we've chosen to use a Custom Allocator for two primary reasons: • Performance Improvement: • Our custom allocator is designed to provide faster allocations and deallocations compared
    0 码力 | 111 页 | 3.03 MB | 6 月前
    3
  • pdf文档 A Long Journey of Changing std::sort Implementation at Scale

    called it a comparator sanitizer We saw 7-8% perf improvement in production 75.2RESULTS We called it a comparator sanitizer We saw 7-8% perf improvement in production Reduced branch mispredictions a lot sanitizer We saw 7-8% perf improvement in production Reduced branch mispredictions a lot Fixed thousands of bugs 75.4RESULTS We called it a comparator sanitizer We saw 7-8% perf improvement in production Reduced bugs Fought the Hyrum's Law 75.5RESULTS We called it a comparator sanitizer We saw 7-8% perf improvement in production Reduced branch mispredictions a lot Fixed thousands of bugs Fought the Hyrum's Law
    0 码力 | 182 页 | 7.65 MB | 6 月前
    3
  • pdf文档 The Next G of PHP--鸟哥@PHPCON2017

    $0x3e8, %rdx jl .L1 php -dopcache.jit_debug=1 loop.php JUST-IN-TIME COMPILER · Over 100% Improvement In Bench VS PHP-7.2 BENCHMARK 0 3.5 7 10.5 14 PHP-5.0 PHP-5.1 PHP-5.2 PHP-5.3 PHP-5.4 PHP-5 0.048 0.104 0.077 0.01 0.01 0.01 0.022 PHP-7.2 PHP-JIT JUST-IN-TIME COMPILER · 7% Qps Improvement In Wordpress Homepage VS PHP-7.2 WORDPRESS HOMEPAGE BENCHMARK 0 100 200 300 400 PHP-5.0 Visible Improvement On Old Applications · Significant Improvement On Well-Written Codes · Type Inference Plays Very Important Role In Jit · More Type Info == More Performance Improvement · Use
    0 码力 | 25 页 | 297.68 KB | 1 年前
    3
共 1000 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
TheGoalProcessofOngoingImprovementAdventureswithLegacyCodebasesTalesIncrementalGoonGPUApacheKyuubi1.6DocumentationCooperativeC++EvolutionEfficientDeepLearningBookEDLChapterTechniquesUsingModerntoBuildXOffsetDatastructureLongJourneyChangingstdsortImplementationatScaleNextPHP鸟哥PHPCON2017
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩