积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(201)Python(57)综合其他(45)区块链(42)系统运维(25)数据库(24)UML(24)云计算&大数据(22)机器学习(20)前端开发(17)

语言

全部中文(简体)(292)英语(25)日语(13)中文(简体)(3)

格式

全部PDF文档 PDF(289)其他文档 其他(35)PPT文档 PPT(9)DOC文档 DOC(1)
 
本次搜索耗时 0.063 秒,为您找到相关结果约 334 个.
  • 全部
  • 后端开发
  • Python
  • 综合其他
  • 区块链
  • 系统运维
  • 数据库
  • UML
  • 云计算&大数据
  • 机器学习
  • 前端开发
  • 全部
  • 中文(简体)
  • 英语
  • 日语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 机器学习课程-温州大学-02-数学基础回顾-0.机器学习的数学基础整理(国内教材)

    haiguang2000@qq.com 数学基础笔记(V1.01) 最后修改:2018-04-19 你不是一个人在战斗! I 目录 机器学习的数学基础 .............................................................................................. ................. 1 高等数学 ........................................................................................................................... 1 线性代数 ......................................... ..................................................................... 19 机器学习的数学基础 1 机器学习的数学基础 高等数学 1.导数定义: 导数和微分的概念 ?′(?0) = lim ??→0 ?(?0+??)−?(?0) ?? (1) 或者:
    0 码力 | 31 页 | 1.18 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-高等数学回顾

    1 2021年07月 机器学习-高等数学回顾 黄海广 副教授 2 高等数学 1.导数定义: 导数和微分的概念 ?′(?0) = lim ??→0 ?(?0+??)−?(?0) ?? (1) 或者:?′(?0) = lim ?→?0 ?(?)−?(?0) ?−?0 (2) 3 高等数学 2.左右导数导数的几何意义和物理意义 函数?(?)在?0处的左、右导数分别定义为: + ?(?)−?(?0) ?−?0 4 高等数学 3.函数的可导性与连续性之间的关系 Th1: 函数?(?)在?0处可微⇔ ?(?)在?0处可导。 Th2:若函数在点?0处可导,则? = ?(?)在点?0处连续,反之则不成立。即函数连续不一定可 导。 Th3:?′(?0)存在⇔ ?′−(?0) = ?′+(?0) 5 高等数学 4.平面曲线的切线和法线 切线方程 : ? − 0) ≠ 0 6 高等数学 5.四则运算法则 设函数? = ?(?),? = ?(?)在点?可导,则: (1) ? ± ? ′ = ?′ ± ?′ (2) (??)′ = ??′ + ??′ ?(??) = ??? + ??? (3) ( ? ?)′ = ??′−??′ ?2 (? ≠ 0) ?( ? ?) = ???−??? ?2 7 高等数学 6.基本导数与微分表
    0 码力 | 28 页 | 787.86 KB | 1 年前
    3
  • pdf文档 数学运算

    0 码力 | 11 页 | 1015.16 KB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-02-数学基础回顾-2.CS229-Prob

    多元高斯分布 5. 其他资源 概率论复习和参考 概率论是对不确定性的研究。通过这门课,我们将依靠概率论中的概念来推导机器学习算法。这篇笔记 试图涵盖适用于CS229的概率论基础。概率论的数学理论非常复杂,并且涉及到“分析”的一个分支:测 度论。在这篇笔记中,我们提供了概率的一些基本处理方法,但是不会涉及到这些更复杂的细节。 1. 概率的基本要素 为了定义集合上的概率,我们需要一些基本元素,
    0 码力 | 12 页 | 1.17 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-02-数学基础回顾-1.CS229-LinearAlgebra

    行和第 列中的 的元素: 我们用 或者 表示矩阵 的第 列: 我们用 或者 表示矩阵 的第 行: 在许多情况下,将矩阵视为列向量或行向量的集合非常重要且方便。 通常,在向量而不是标量上 操作在数学上(和概念上)更清晰。只要明确定义了符号,用于矩阵的列或行的表示方式并没有通 用约定。 2.矩阵乘法 两个矩阵相乘,其中 and ,则: 其中: 请注意,为了使矩阵乘积存在, 中的列数必须等于 行之间的矩阵 向量积。公式如下: 这里第 行的 由左边的向量的矩阵向量乘积给出: 将矩阵乘法剖析到如此大的程度似乎有点过分,特别是当所有这些观点都紧跟在我们在本节开头给出的 初始定义(在一行数学中)之后。 这些不同方法的直接优势在于它们允许您在向量的级别/单位而不是标量上进行操作。 为了完全理解线 性代数而不会迷失在复杂的索引操作中,关键是要用尽可能多的概念进行操作。 实际上所有的线 对应的特征向量,我们只需解线性方程 ,因为 是奇异的,所以保证有一个非零解(但也可能有多个或无穷多个解)。 应该注意的是,这不是实际用于数值计算特征值和特征向量的方法(记住行列式的完全展开式有 项),这是一个数学上的争议。 以下是特征值和特征向量的属性(所有假设在 具有特征值 的前提下): 的迹等于其特征值之和 的行列式等于其特征值的乘积 的秩等于 的非零特征值的个数 假设 非奇异,其特征值为 和特征向量为
    0 码力 | 19 页 | 1.66 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01深度学习-引言

    深度学习入门-图像分割 18 自然语言处理(Natural Language Processing)是一门通过建 立形式化的 计算模型来分析、理解和处理自然语言的学科,也是 一门横跨语言学、计算 机科学、数学等领域的交叉学科。自然语 言处理,是指用计算机对自然语言 的形、音、义等信息进行处理 ,即对字、词、句、篇章的输入、输出、识别、 分析、理解、生 成等的操作和加工。自然语言处理的具体表现形式包括机器 psai 普西 Ω ω omega omiga 欧米 30 3. 深度学习的背景知识-数学基础 高等数学 导数、微分、泰勒公式…… 线性代数 向量、矩阵、行列式、秩、线性方程组、特征值和特征向量…… 概率论与数理统计 随机事件和概率、概率的基本性质和公式、常见分布、期望、协 方差…… 31 高等数学-导数 导数(Derivative),也叫导函数值。又名微商, 是微积分中的重要基础概念。当函数 = ?(?) 的自变量?在一点?0上产生一个增量??时,函 数输出值的增量??与自变量增量??的比值在 ??趋于0时的极限?如果存在,?即为在?0处的 导数,记作?′(?0)。 32 高等数学-函数的连续性 设函数 y = ? ? 在点?0的某邻域内有定义,如果当自变量的改变量??趋近 于零时,相应函数的改变量Δ?也趋近于零,则称? = ?(?)在点 ?0处连续。 lim Δ?→0Δ
    0 码力 | 80 页 | 5.38 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01机器学习-引言

    psai 普西 Ω ω omega omiga 欧米 29 3. 机器学习的背景知识-数学基础 高等数学 导数、微分、泰勒公式…… 线性代数 向量、矩阵、行列式、秩、线性方程组、特征值和特征向量…… 概率论与数理统计 随机事件和概率、概率的基本性质和公式、常见分布、期望、协 方差…… 30 高等数学-导数 导数(Derivative),也叫导函数值。又名微商, 是微积分中的重要基础概念。当函数 = ?(?) 的自变量?在一点?0上产生一个增量??时,函 数输出值的增量??与自变量增量??的比值在 ??趋于0时的极限?如果存在,?即为在?0处的 导数,记作?′(?0)。 31 高等数学-函数的连续性 设函数 y = ? ? 在点?0的某邻域内有定义,如果当自变量的改变量??趋近 于零时,相应函数的改变量Δ?也趋近于零,则称? = ?(?)在点 ?0处连续。 lim Δ?→0Δ 处连续,需要满足的条件: 存在 1. 函数在该点处有定义 2. 函数在该点处极限 3. 极限值等于函数值 高等数学-函数的连续性 ?0 ?(?0) lim ?→?0? ? 33 , 如果平均变化率的极限存在 则称此极限为函数 ? = ?(?) 在点 处的导数, 高等数学-导数 limΔ?→0 Δ? Δ? = limΔ?→0 ? ?0 + Δ? − ? ?0 Δ? ቚ ?′
    0 码力 | 78 页 | 3.69 MB | 1 年前
    3
  • pdf文档 ECMAScript规范 第三版 中文版

    定义实体的内置对象(built-in object),它们包 括 Global(全局)对象、Object 对象、Function (函数)对象、Array(数组)对象、String 对象、Number 对 象、Math(数学库)对象、Date(日期)对象、RegExp(正 则表达式)对 象以及其它 Error 类对象:Error,EvalError(求 值错误),RangeError(越界错误), ReferenceError(引 加法、减法、取负、乘法、除法这些数学运算,以及这一节稍后定义的数学函数应被理解 为总是使用实数做精确的数学计算,这不包括无穷大或 负零。本标准中的算法在适当的地方会 建模浮点数运算,描述其步骤,处理无穷大和有符号零并进行舍入。如果数学运算或函数应用 于一个浮点数,应被理解为应用 于此浮点数所代表的精确的数学值;比如,浮点数必须是有限 的,若为+0 或-0 则简单地取与之相符的数学值 0。 数学函数 abs(x) -x, 否则是 x 本身。 若为 x 正,数学函数 sign(x) 返回 1;为负则返回-1。在本标准中,对于 x 为零的情况,不使 用函数 sign。 记法"x modulo y"(y 必须为有限的非零值)计算 k 值,它与 y 同号(或同为零),使得 abs(k) < abs(y) 且对于同样的整数 q 有 x-k = q × y。 数学函数 floor(x) 返回不大于 x 的最
    0 码力 | 58 页 | 563.06 KB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    ,体会到知 识是为了解决问题而生的,避免陷入为了学习而学习的窘境。 尽管作者试图将读者的基础要求降到最低,但是人工智能不可避免地需要使用正式化的 数学符号推导,其中涉及到少量的概率与统计、线性代数、微积分等数学知识,一般要求读 者对这些数学知识有初步印象或了解即可。比起理论基础,读者需要有少量的编程经验,特 别是 Python 语言编程经验,显得更加重要,因为本书更侧重于实用性,而不是堆砌公式。 4.3 待优化张量 4.4 创建张量 预览版202112 4.5 张量的典型应用 4.6 索引与切片 4.7 维度变换 4.8 Broadcasting 4.9 数学运算 4.10 前向传播实战 4.11 参考文献 第 5 章 PyTorch 进阶 5.1 合并与分割 5.2 数据统计 5.3 张量比较 5.4 填充与复制 5 启了深度学习的第三次复兴之路。 1.2.1 浅层神经网络 1943 年,心理学家 Warren McCulloch 和逻辑学家 Walter Pitts 根据生物神经元(Neuron) 结构,提出了最早的神经元数学模型,称为 MP 神经元模型。该模型的输出?(?) = ℎ(?(?)),其中?(?) = ∑ ?? ? , ?? ∈ {0,1},模型通过?(?)的值来完成输出值的预测,如图 1.4 所示。如果?(
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    疾病的诊断方式,并 在基础科学中扮演着越来越重要的角色——从天体物理学到生物学。 关于本书 这本书代表了我们的尝试——让深度学习可平易近人,教会人们概念、背景和代码。 1 一种结合了代码、数学和HTML的媒介 任何一种计算技术要想发挥其全部影响力,都必须得到充分的理解、充分的文档记录,并得到成熟的、维护 良好的工具的支持。关键思想应该被清楚地提炼出来,尽可能减少需要让新的从业者跟上时代的入门时间。 都会将不同的学科结合在一起。应用深度学习需 要同时了解(1)以特定方式提出问题的动机;(2)给定建模方法的数学; (3)将模型拟合数据的优化算法; (4) 能够有效训练模型、克服数值计算缺陷并最大限度地利用现有硬件的工程方法。同时教授表述问题所需的批 判性思维技能、解决问题所需的数学知识,以及实现这些解决方案所需的软件工具,这是一个巨大的挑战。 在我们开始写这本书的时候,没有资源能够同时满 现某些实际目的所需的非常时刻学习概念。 虽然我们在开始时花了一些时间来教授基础的背景知识,如线性代数和概率,但我们希望你在思考更深奥的 概率分布之前,先体会一下训练模型的满足感。 除了提供基本数学背景速成课程的几节初步课程外,后续的每一章都介绍了适量的新概念,并提供可独立工 作的例子——使用真实的数据集。这带来了组织上的挑战。某些模型可能在逻辑上组合在单节中。而一些想 法可能最好是通过连
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
共 334 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 34
前往
页
相关搜索词
机器学习课程温州大学02数学基础回顾整理国内教材高等高等数学深度PyTorch入门实战12运算CS229ProbLinearAlgebra01引言ECMAScript规范第三第三版中文文版中文版深度学习动手v2
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩