julia 1.10.10type. "Fast" arrays like NumPy arrays that store elements in-place (i.e., dtype is np.float64, [('f1', np.uint64), ('f2', np.int32)], etc.) can be rep- resented by Array{T} where T is a concrete, immutable states that calling with certain argtypes is a part of public API. For example, the change between f1 and f2 in the example below is usually considered compatible because the change is invisible by the Tuple{Real}, x); julia> f(2) 5 julia> f1(::Integer) = Integer f1(::Real) = Real; julia> f2(x::Real) = _f2(x) _f2(::Integer) = Integer _f2(_) = Real; julia> f1(1) IntegerCHAPTER 41. ESSENTIALS 5690 码力 | 1692 页 | 6.34 MB | 3 月前3
Julia 1.10.9type. "Fast" arrays like NumPy arrays that store elements in-place (i.e., dtype is np.float64, [('f1', np.uint64), ('f2', np.int32)], etc.) can be rep- resented by Array{T} where T is a concrete, immutable states that calling with certain argtypes is a part of public API. For example, the change between f1 and f2 in the example below is usually considered compatible because the change is invisible by the Tuple{Real}, x); julia> f(2) 5 julia> f1(::Integer) = Integer f1(::Real) = Real; julia> f2(x::Real) = _f2(x) _f2(::Integer) = Integer _f2(_) = Real; julia> f1(1) IntegerCHAPTER 41. ESSENTIALS 5690 码力 | 1692 页 | 6.34 MB | 3 月前3
Julia 1.11.4type. "Fast" arrays like NumPy arrays that store elements in-place (i.e., dtype is np.float64, [('f1', np.uint64), ('f2', np.int32)], etc.) can be rep- resented by Array{T} where T is a concrete, immutable states that calling with certain argtypes is a part of public API. For example, the change between f1 and f2 in the example below is usually considered compatible because the change is invisible by the 5 julia> f1(::Integer) = Integer f1(::Real) = Real; julia> f2(x::Real) = _f2(x) _f2(::Integer) = Integer _f2(_) = Real; julia> f1(1) Integer julia> f2(1) Integer julia> invoke(f1, Tuple{Real}0 码力 | 2007 页 | 6.73 MB | 3 月前3
Julia 1.11.5 Documentationtype. "Fast" arrays like NumPy arrays that store elements in-place (i.e., dtype is np.float64, [('f1', np.uint64), ('f2', np.int32)], etc.) can be rep- resented by Array{T} where T is a concrete, immutable states that calling with certain argtypes is a part of public API. For example, the change between f1 and f2 in the example below is usually considered compatible because the change is invisible by the 5 julia> f1(::Integer) = Integer f1(::Real) = Real; julia> f2(x::Real) = _f2(x) _f2(::Integer) = Integer _f2(_) = Real; julia> f1(1) Integer julia> f2(1) Integer julia> invoke(f1, Tuple{Real}0 码力 | 2007 页 | 6.73 MB | 3 月前3
Julia 1.11.6 Release Notestype. "Fast" arrays like NumPy arrays that store elements in-place (i.e., dtype is np.float64, [('f1', np.uint64), ('f2', np.int32)], etc.) can be rep- resented by Array{T} where T is a concrete, immutable states that calling with certain argtypes is a part of public API. For example, the change between f1 and f2 in the example below is usually considered compatible because the change is invisible by the 5 julia> f1(::Integer) = Integer f1(::Real) = Real; julia> f2(x::Real) = _f2(x) _f2(::Integer) = Integer _f2(_) = Real; julia> f1(1) Integer julia> f2(1) Integer julia> invoke(f1, Tuple{Real}0 码力 | 2007 页 | 6.73 MB | 3 月前3
julia 1.13.0 DEVtype. "Fast" arrays like NumPy arrays that store elements in-place (i.e., dtype is np.float64, [('f1', np.uint64), ('f2', np.int32)], etc.) can be rep- resented by Array{T} where T is a concrete, immutable states that calling with certain argtypes is a part of public API. For example, the change between f1 and f2 in the example below is usually considered compatible because the change is invisible by the Tuple{Real}, x); julia> f(2) 5 julia> f1(::Integer) = Integer f1(::Real) = Real; julia> f2(x::Real) = _f2(x) _f2(::Integer) = Integer _f2(_) = Real; julia> f1(1) IntegerCHAPTER 43. ESSENTIALS 6460 码力 | 2058 页 | 7.45 MB | 3 月前3
Julia 1.12.0 RC1type. "Fast" arrays like NumPy arrays that store elements in-place (i.e., dtype is np.float64, [('f1', np.uint64), ('f2', np.int32)], etc.) can be rep- resented by Array{T} where T is a concrete, immutable states that calling with certain argtypes is a part of public API. For example, the change between f1 and f2 in the example below is usually considered compatible because the change is invisible by the 5 julia> f1(::Integer) = Integer f1(::Real) = Real; julia> f2(x::Real) = _f2(x) _f2(::Integer) = Integer _f2(_) = Real; julia> f1(1) Integer julia> f2(1) Integer julia> invoke(f1, Tuple{Real}0 码力 | 2057 页 | 7.44 MB | 3 月前3
Julia 1.12.0 Beta4type. "Fast" arrays like NumPy arrays that store elements in-place (i.e., dtype is np.float64, [('f1', np.uint64), ('f2', np.int32)], etc.) can be rep- resented by Array{T} where T is a concrete, immutable states that calling with certain argtypes is a part of public API. For example, the change between f1 and f2 in the example below is usually considered compatible because the change is invisible by the 5 julia> f1(::Integer) = Integer f1(::Real) = Real; julia> f2(x::Real) = _f2(x) _f2(::Integer) = Integer _f2(_) = Real; julia> f1(1) Integer julia> f2(1) Integer julia> invoke(f1, Tuple{Real}0 码力 | 2057 页 | 7.44 MB | 3 月前3
Julia 1.12.0 Beta3type. "Fast" arrays like NumPy arrays that store elements in-place (i.e., dtype is np.float64, [('f1', np.uint64), ('f2', np.int32)], etc.) can be rep- resented by Array{T} where T is a concrete, immutable states that calling with certain argtypes is a part of public API. For example, the change between f1 and f2 in the example below is usually considered compatible because the change is invisible by the 5 julia> f1(::Integer) = Integer f1(::Real) = Real; julia> f2(x::Real) = _f2(x) _f2(::Integer) = Integer _f2(_) = Real; julia> f1(1) Integer julia> f2(1) Integer julia> invoke(f1, Tuple{Real}0 码力 | 2057 页 | 7.44 MB | 3 月前3
julia 1.12.0 beta1type. "Fast" arrays like NumPy arrays that store elements in-place (i.e., dtype is np.float64, [('f1', np.uint64), ('f2', np.int32)], etc.) can be rep- resented by Array{T} where T is a concrete, immutable states that calling with certain argtypes is a part of public API. For example, the change between f1 and f2 in the example below is usually considered compatible because the change is invisible by the 5 julia> f1(::Integer) = Integer f1(::Real) = Real; julia> f2(x::Real) = _f2(x) _f2(::Integer) = Integer _f2(_) = Real; julia> f1(1) Integer julia> f2(1) Integer julia> invoke(f1, Tuple{Real}0 码力 | 2047 页 | 7.41 MB | 3 月前3
共 21 条
- 1
- 2
- 3













