Kubernetes 入門第1 章 Kubernetes 入門 1.1 Kubernetes 是什麼? Kubernetes 是什麼? 首先,它是一個全新的基於容器技術的分散式架構解決方案。這個方案雖然還很 新,但它是 Google 十幾年來大規模應用容器技術的經驗累積和演進的一個重要成 果。確切地說,Kubernetes 是 Google 嚴格保密十幾年的秘密武器——Borg 的開源 專案版本。Borg 是 憑證,獲得用戶端憑證公開金鑰,並用該公開金鑰認證憑證資訊,並確認用戶 端是否合法。 (5) 用戶端透過隨機金鑰加密資訊,並發送加密後的資訊給服務端。伺服器端和用 戶端協商好加密方案後,用戶端會產生一個隨機的金鑰,用戶端透過協商好的 加密方案,加密這隨機金鑰,並發送隨機金鑰到伺服器端。 伺服器端接收這 個金鑰後,雙方通訊的所有內容都透過隨機金鑰加密。 通訊(隨機私鑰) 身分認證(憑證) 客戶端 伺服器端 身分認證(憑證)0 码力 | 12 页 | 2.00 MB | 1 年前3
Kubernetes平台比較:Red Hat
OpenShift、SUSE Rancher及
Canonical Kubernetes彈性, 依據功能和需求的演進發展改用替代解決方案。 Canonical Kubernetes、Red Hat Openshift及SUSE Rancher都已獲得CNCF認證。 2. 生命週期作業 開始踏上Kubernetes的旅程時,如果沒有思考要如何長期維護叢集,很容易就會 在開發和部署期間遭遇困難。許多以Kubernetes為中心的解決方案,雖然處理了 Kubernetes生命週期的初 高可用度有助於盡量減少停機時間,並達到最高的可靠度及生產力,因此是所 有主要 Kubernetes 解決方案的標準特性。Canonical Kubernetes、Rancher 及OpenShift均提供高可用度叢集。 4. 叢集升級 由於每季都有新的Kubernetes版本,企業務必要確保解決方案具有可靠的升級策 略,跟隨上游保持最新狀態,並且無需犧牲穩定性或中斷持續營運。就此而言, Canonical 集。撰 寫本文時,Red Hat並未正式支援任何單節點OpenShift解決方案。 MicroK8及K3均允許將叢集延伸至多個節點。MicroK8提供方法讓使用者建構具自 我修復能力的高可用度叢集,只需要使用幾個指令,無需進行設定;K3如果要達到 相同成果,就需要進行更多手動作業。 8. 託管Kubernetes方案 為企業工作負載提供無可比擬的自動化程度及通用平台。不過Kubernetes本身是一0 码力 | 10 页 | 1.26 MB | 1 年前3
Comprehensive Rust(繁体中文). . 27 5.7 練習:費波那契數列 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.7.1 解決方案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6 基本的控制流程概念 29 6.1 if 表達式 . 33 6.7 練習:考拉茲序列 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.7.1 解決方案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 II 第 1 天:下午 37 7 Welcome Back 40 8.5 練習:巢狀陣列 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 8.5.1 解決方案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 9 參照 44 9.1 共用列舉 . . . . .0 码力 | 358 页 | 1.41 MB | 10 月前3
Hello 算法 1.2.0 繁体中文 Ruby 版− 20 = 11 元。 3. 從剩餘可選項中拿出最大的 10 元,剩餘 11 − 10 = 1 元。 4. 從剩餘可選項中拿出最大的 1 元,剩餘 1 − 1 = 0 元。 5. 完成找零,方案為 20 + 10 + 1 = 31 元。 第 1 章 初識演算法 www.hello‑algo.com 13 圖 1‑3 貨幣找零過程 在以上步驟中,我們每一步都採取當前看來最好的選擇(儘可 問題就會越深入,問題就能被解決得更優雅。 17 第 2 章 複雜度分析 Abstract 複雜度分析猶如浩瀚的演算法宇宙中的時空嚮導。 它帶領我們在時間與空間這兩個維度上深入探索,尋找更優雅的解決方案。 第 2 章 複雜度分析 www.hello‑algo.com 18 2.1 演算法效率評估 在演算法設計中,我們先後追求以下兩個層面的目標。 1. 找到問題解法:演算法需要在規定的輸入範圍內可靠地求得問題的正確解。 主流排序演算法的時間複雜度通常為 ?(? log ?) ,例如快速排序、合併排序、堆積排序等。 7. 階乘階 ?(?!) 階乘階對應數學上的“全排列”問題。給定 ? 個互不重複的元素,求其所有可能的排列方案,方案數量為: ?! = ? × (? − 1) × (? − 2) × ⋯ × 2 × 1 階乘通常使用遞迴實現。如圖 2‑14 和以下程式碼所示,第一層分裂出 ? 個,第二層分裂出 ? − 1 個,以此0 码力 | 372 页 | 18.75 MB | 10 月前3
Hello 算法 1.2.0 繁体中文 C# 版− 20 = 11 元。 3. 從剩餘可選項中拿出最大的 10 元,剩餘 11 − 10 = 1 元。 4. 從剩餘可選項中拿出最大的 1 元,剩餘 1 − 1 = 0 元。 5. 完成找零,方案為 20 + 10 + 1 = 31 元。 第 1 章 初識演算法 www.hello‑algo.com 13 圖 1‑3 貨幣找零過程 在以上步驟中,我們每一步都採取當前看來最好的選擇(儘可 問題就會越深入,問題就能被解決得更優雅。 17 第 2 章 複雜度分析 Abstract 複雜度分析猶如浩瀚的演算法宇宙中的時空嚮導。 它帶領我們在時間與空間這兩個維度上深入探索,尋找更優雅的解決方案。 第 2 章 複雜度分析 www.hello‑algo.com 18 2.1 演算法效率評估 在演算法設計中,我們先後追求以下兩個層面的目標。 1. 找到問題解法:演算法需要在規定的輸入範圍內可靠地求得問題的正確解。 主流排序演算法的時間複雜度通常為 ?(? log ?) ,例如快速排序、合併排序、堆積排序等。 7. 階乘階 ?(?!) 階乘階對應數學上的“全排列”問題。給定 ? 個互不重複的元素,求其所有可能的排列方案,方案數量為: ?! = ? × (? − 1) × (? − 2) × ⋯ × 2 × 1 階乘通常使用遞迴實現。如圖 2‑14 和以下程式碼所示,第一層分裂出 ? 個,第二層分裂出 ? − 1 個,以此0 码力 | 379 页 | 18.79 MB | 10 月前3
Hello 算法 1.2.0 繁体中文 Dart 版− 20 = 11 元。 3. 從剩餘可選項中拿出最大的 10 元,剩餘 11 − 10 = 1 元。 4. 從剩餘可選項中拿出最大的 1 元,剩餘 1 − 1 = 0 元。 5. 完成找零,方案為 20 + 10 + 1 = 31 元。 第 1 章 初識演算法 www.hello‑algo.com 13 圖 1‑3 貨幣找零過程 在以上步驟中,我們每一步都採取當前看來最好的選擇(儘可 問題就會越深入,問題就能被解決得更優雅。 17 第 2 章 複雜度分析 Abstract 複雜度分析猶如浩瀚的演算法宇宙中的時空嚮導。 它帶領我們在時間與空間這兩個維度上深入探索,尋找更優雅的解決方案。 第 2 章 複雜度分析 www.hello‑algo.com 18 2.1 演算法效率評估 在演算法設計中,我們先後追求以下兩個層面的目標。 1. 找到問題解法:演算法需要在規定的輸入範圍內可靠地求得問題的正確解。 主流排序演算法的時間複雜度通常為 ?(? log ?) ,例如快速排序、合併排序、堆積排序等。 7. 階乘階 ?(?!) 階乘階對應數學上的“全排列”問題。給定 ? 個互不重複的元素,求其所有可能的排列方案,方案數量為: ?! = ? × (? − 1) × (? − 2) × ⋯ × 2 × 1 階乘通常使用遞迴實現。如圖 2‑14 和以下程式碼所示,第一層分裂出 ? 個,第二層分裂出 ? − 1 個,以此0 码力 | 378 页 | 18.77 MB | 10 月前3
Hello 算法 1.2.0 繁体中文 Go 版− 20 = 11 元。 3. 從剩餘可選項中拿出最大的 10 元,剩餘 11 − 10 = 1 元。 4. 從剩餘可選項中拿出最大的 1 元,剩餘 1 − 1 = 0 元。 5. 完成找零,方案為 20 + 10 + 1 = 31 元。 第 1 章 初識演算法 www.hello‑algo.com 13 圖 1‑3 貨幣找零過程 在以上步驟中,我們每一步都採取當前看來最好的選擇(儘可 問題就會越深入,問題就能被解決得更優雅。 17 第 2 章 複雜度分析 Abstract 複雜度分析猶如浩瀚的演算法宇宙中的時空嚮導。 它帶領我們在時間與空間這兩個維度上深入探索,尋找更優雅的解決方案。 第 2 章 複雜度分析 www.hello‑algo.com 18 2.1 演算法效率評估 在演算法設計中,我們先後追求以下兩個層面的目標。 1. 找到問題解法:演算法需要在規定的輸入範圍內可靠地求得問題的正確解。 主流排序演算法的時間複雜度通常為 ?(? log ?) ,例如快速排序、合併排序、堆積排序等。 7. 階乘階 ?(?!) 階乘階對應數學上的“全排列”問題。給定 ? 個互不重複的元素,求其所有可能的排列方案,方案數量為: ?! = ? × (? − 1) × (? − 2) × ⋯ × 2 × 1 階乘通常使用遞迴實現。如圖 2‑14 和以下程式碼所示,第一層分裂出 ? 個,第二層分裂出 ? − 1 個,以此0 码力 | 385 页 | 18.80 MB | 10 月前3
Hello 算法 1.2.0 繁体中文 Kotlin 版− 20 = 11 元。 3. 從剩餘可選項中拿出最大的 10 元,剩餘 11 − 10 = 1 元。 4. 從剩餘可選項中拿出最大的 1 元,剩餘 1 − 1 = 0 元。 5. 完成找零,方案為 20 + 10 + 1 = 31 元。 第 1 章 初識演算法 www.hello‑algo.com 13 圖 1‑3 貨幣找零過程 在以上步驟中,我們每一步都採取當前看來最好的選擇(儘可 問題就會越深入,問題就能被解決得更優雅。 17 第 2 章 複雜度分析 Abstract 複雜度分析猶如浩瀚的演算法宇宙中的時空嚮導。 它帶領我們在時間與空間這兩個維度上深入探索,尋找更優雅的解決方案。 第 2 章 複雜度分析 www.hello‑algo.com 18 2.1 演算法效率評估 在演算法設計中,我們先後追求以下兩個層面的目標。 1. 找到問題解法:演算法需要在規定的輸入範圍內可靠地求得問題的正確解。 主流排序演算法的時間複雜度通常為 ?(? log ?) ,例如快速排序、合併排序、堆積排序等。 7. 階乘階 ?(?!) 階乘階對應數學上的“全排列”問題。給定 ? 個互不重複的元素,求其所有可能的排列方案,方案數量為: ?! = ? × (? − 1) × (? − 2) × ⋯ × 2 × 1 階乘通常使用遞迴實現。如圖 2‑14 和以下程式碼所示,第一層分裂出 ? 個,第二層分裂出 ? − 1 個,以此0 码力 | 382 页 | 18.79 MB | 10 月前3
Hello 算法 1.2.0 繁体中文 Java 版− 20 = 11 元。 3. 從剩餘可選項中拿出最大的 10 元,剩餘 11 − 10 = 1 元。 4. 從剩餘可選項中拿出最大的 1 元,剩餘 1 − 1 = 0 元。 5. 完成找零,方案為 20 + 10 + 1 = 31 元。 第 1 章 初識演算法 www.hello‑algo.com 13 圖 1‑3 貨幣找零過程 在以上步驟中,我們每一步都採取當前看來最好的選擇(儘可 問題就會越深入,問題就能被解決得更優雅。 17 第 2 章 複雜度分析 Abstract 複雜度分析猶如浩瀚的演算法宇宙中的時空嚮導。 它帶領我們在時間與空間這兩個維度上深入探索,尋找更優雅的解決方案。 第 2 章 複雜度分析 www.hello‑algo.com 18 2.1 演算法效率評估 在演算法設計中,我們先後追求以下兩個層面的目標。 1. 找到問題解法:演算法需要在規定的輸入範圍內可靠地求得問題的正確解。 主流排序演算法的時間複雜度通常為 ?(? log ?) ,例如快速排序、合併排序、堆積排序等。 7. 階乘階 ?(?!) 階乘階對應數學上的“全排列”問題。給定 ? 個互不重複的元素,求其所有可能的排列方案,方案數量為: ?! = ? × (? − 1) × (? − 2) × ⋯ × 2 × 1 階乘通常使用遞迴實現。如圖 2‑14 和以下程式碼所示,第一層分裂出 ? 個,第二層分裂出 ? − 1 個,以此0 码力 | 379 页 | 18.79 MB | 10 月前3
Hello 算法 1.2.0 繁体中文 JavaScript 版− 20 = 11 元。 3. 從剩餘可選項中拿出最大的 10 元,剩餘 11 − 10 = 1 元。 4. 從剩餘可選項中拿出最大的 1 元,剩餘 1 − 1 = 0 元。 5. 完成找零,方案為 20 + 10 + 1 = 31 元。 第 1 章 初識演算法 www.hello‑algo.com 13 圖 1‑3 貨幣找零過程 在以上步驟中,我們每一步都採取當前看來最好的選擇(儘可 問題就會越深入,問題就能被解決得更優雅。 17 第 2 章 複雜度分析 Abstract 複雜度分析猶如浩瀚的演算法宇宙中的時空嚮導。 它帶領我們在時間與空間這兩個維度上深入探索,尋找更優雅的解決方案。 第 2 章 複雜度分析 www.hello‑algo.com 18 2.1 演算法效率評估 在演算法設計中,我們先後追求以下兩個層面的目標。 1. 找到問題解法:演算法需要在規定的輸入範圍內可靠地求得問題的正確解。 主流排序演算法的時間複雜度通常為 ?(? log ?) ,例如快速排序、合併排序、堆積排序等。 7. 階乘階 ?(?!) 階乘階對應數學上的“全排列”問題。給定 ? 個互不重複的元素,求其所有可能的排列方案,方案數量為: ?! = ? × (? − 1) × (? − 2) × ⋯ × 2 × 1 階乘通常使用遞迴實現。如圖 2‑14 和以下程式碼所示,第一層分裂出 ? 個,第二層分裂出 ? − 1 個,以此0 码力 | 379 页 | 18.78 MB | 10 月前3
共 19 条
- 1
- 2













