积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(59)机器学习(54)后端开发(51)综合其他(27)区块链(20)Python(12)Blender(11)系统运维(9)数据库(7)Linux(7)

语言

全部中文(简体)(155)

格式

全部PDF文档 PDF(131)其他文档 其他(23)PPT文档 PPT(1)
 
本次搜索耗时 0.089 秒,为您找到相关结果约 155 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 后端开发
  • 综合其他
  • 区块链
  • Python
  • Blender
  • 系统运维
  • 数据库
  • Linux
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 8 4 Deep Learning with Python 费良宏

    文的自动分类 半监督学习 - 介于监督学习和无监督学习之间,算法: Graph Inference 或者Laplacian SVM 强化学习- 通过观察来学习做成如何的动作, 算法:Q-Learning以及时间差学习 机器学习- 方法及流程 输入特征选择 – 基于什么进行预测 目标 – 预测什么 预测功能 – 回归、聚类、降维... Xn -> F(xn) -> T(x) 机器学习- (NYU,2002), Facebook AI, Google Deepmind Theano (University of Montreal, ~2010), 学院派 Kersa, “Deep Learning library for Theano and TensorFlow” Caffe (Berkeley),卷积神经网络,贾扬清 TensorFlow (Google) Spark MLLib
    0 码力 | 49 页 | 9.06 MB | 1 年前
    3
  • pdf文档 2022年美团技术年货 合辑

    NeurIPS 2021 | Twins:重新思考高效的视觉注意力模型设计 339 目录 iv > 2022年美团技术年货 美团获得小样本学习榜单 FewCLUE 第一! Prompt Learning+ 自训练实战 353 DSTC10 开放领域对话评估比赛冠军方法总结 368 KDD 2022 | 美团技术团队精选论文解读 382 ACM SIGIR 2022 | 美团技术团队精选论文解读 ConvNets Great Again, https://arxiv.org/ pdf/2101.03697 [5] CSPNet: A New Backbone that can Enhance Learning Capability of CNN, https://arxiv.org/abs/1911.11929 [6] Path aggregation network for instance abs/2103.14259 [8] Computer Architecture: A Quantitative Approach [9] SIoU Loss: More Powerful Learning for Bounding Box Regression, https:// arxiv.org/abs/2205.12740 6. 作者简介 楚怡、凯衡、亦非、程孟、秦皓、一鸣、红亮、林园等,均来自美团基础研发平台
    0 码力 | 1356 页 | 45.90 MB | 1 年前
    3
  • pdf文档 1 Python在Azure Notebook产品发展中的核心地位 以及通过Visual Studio Code的最佳Azure实践 韩骏

    相对于机器学习,严重依赖于高端机,大量的 GPU 运算 • 高端机的成本高 开发工具 • 复杂的工具链 • 搭建环境花费时间 深度学习 à Azure Machine Learning 开发工具 à Azure Notebook Azure Machine Learning • 拥有不同运算性能的机器 • 降低成本,按需付费 • 支持不同的开源框架:TenserFlow、PyTorch、MXNet 等 Azure Azure Machine Learning SDK 2. 连接到 Azure Machine Learning 的 Workspace 3. 创建远程运算资源 4. 上传训练数据 5. 准备 training script 6. 把 training 任务提交到 Azure Machine Learning 1. 安装 Azure Machine Learning SDK 2. 连接到 连接到 Azure Machine Learning 的 Workspace 3. 创建远程运算资源 —— NC6 GPU machines 4. 上传训练数据 5. 准备 training script 6. 把 training 任务提交到 Azure Machine Learning 1. 创建 experiment 2. 创建 PyTorch estimator 3. 提交 training
    0 码力 | 55 页 | 14.99 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    Issues 页面提交: https://github.com/dragen1860/Deep-Learning-with-PyTorch-book/issues ❑ 本书主页,以及源代码,电子书下载,正式版也会在此同步更新: https://github.com/dragen1860/Deep-Learning-with-PyTorch-book ❑ 姊妹书《TensorFlow 深度学习—深入理解人工智能算法设计》: 图 1.1 人工智能、机器学习、神经网络和深度学习 1.1.2 机器学习 机器学习可以分为有监督学习(Supervised Learning)、无监督学习(Unsupervised Learning)和强化学习(Reinforcement Learning,简称 RL),如图 1.2 所示。 机器学习 有监督学习 无监督学习 强化学习 图 1.2 机器学习的分类 有监督学习 的数据集,算法需 要自行发现数据的模态,这种方式叫作无监督学习。无监督学习中有一类算法将自身作为 监督信号,即模型需要学习的映射为??: ? → ?,称为自监督学习(Self-supervised Learning)。在训练时,通过计算模型的预测值??(?)与自身?之间的误差来优化网络参数?。 常见的无监督学习算法有自编码器、生成对抗网络等。 强化学习 也称为增强学习,通过与环境进行交互来学习解决问题的策略的一类算法。
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 星际争霸与人工智能

    2016~Now 2010~Now AIIDE IEEE CIG SSCAIT Reinforcement Learning Agent Environment Action Observation Reward Goal Deep Reinforcement Learning What is next? • All above are single AI agent • But Multiagent Bidirectionally-Coordinated Net (BiCNet) Neuroscience Hypothesis Source: Reinforcement Learning – An Introduction Architecture Overview https://github.com/alibaba/gym-starcraft Coordinated Ultralisk Hierarchical Reinforcement Learning Strategy & Planning Combat Economy Information Imitation Learning Supervised Learning Reinforcement Learning Continual Learning Source: Overcoming catastrophic
    0 码力 | 24 页 | 2.54 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 54. AutoEncoder自编码器

    Supervised Learning https://towardsdatascience.com/supervised-vs-unsupervised-learning-14f68e32ea8d Massive Unlabeled data Unsupervised Learning https://medium.com/intuitionmachine/predictive-learning-is- the-key-to-deep-learning- acceleration-93e063195fd0 Why needed ▪ Dimension reduction ▪ Preprocessing: Huge dimension, say 224x224, is hard to process ▪ Visualization: https://projector.tensorflow.org/ Compression, denoising, super-resolution … Auto-Encoders https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders- 1c083af4d798 https://towardsdatascience.com/a-wizards-guide-to-adversarial
    0 码力 | 29 页 | 3.49 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    hine learning,ML)是一类强大的可 以从经验中学习的技术。通常采用观测数据或与环境交互的形式,机器学习算法会积累更多的经验,其性能 17 也会逐步提高。相反,对于刚刚所说的电子商务平台,如果它一直执行相同的业务逻辑,无论积累多少经验, 都不会自动提高,除非开发人员认识到问题并更新软件。本书将带读者开启机器学习之旅,并特别关注深度 学习(deep learning,DL)的基 动可以调整程序的行为。任一调整参数后的程序被 称为模型(model)。通过操作参数而生成的所有不同程序(输入‐输出映射)的集合称为“模型族”。使用数 据集来选择参数的元程序被称为学习算法(learning algorithm)。 在开始用机器学习算法解决问题之前,我们必须精确地定义问题,确定输入(input)和输出(output)的性 质,并选择合适的模型族。在本例中,模型接收一段音频作为 从英语映射到中文,可能需要一个完全不同的模型族。 但如果模型所有的按钮(模型参数)都被随机设置,就不太可能识别出“Alexa”“Hey Siri”或任何其他单 词。在机器学习中,学习(learning)是一个训练模型的过程。通过这个过程,我们可以发现正确的参数集, 从而使模型强制执行所需的行为。换句话说,我们用数据训练(train)模型。如 图1.1.2所示,训练过程通常 包含如下步骤:
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 从 Swift 到机器学习 - 王巍

    mlmodel VisionFeaturePrint_Scene 只存在于 iOS 12, macOS 10.14 Vision 框架背后的特征提取 17KB in Demo Transfer Learning ✅ VisionFeaturePrint_Scene ? VisionFeaturePrint_Screen Core ML Community Tools visionFeaturePrint Machine Learning for iOS https://github.com/alexsosn/iOS_ML Apple Machine Learning Journal https://machinelearning.apple.com Kraggle https://www.kaggle.com Machine Learning (Turi) - Coursera https://coursera.org/specializations/machine-learning Deep Learning with Python https://www.manning.com/books/deep-learning-with-python 谢谢!: ] @onevcat, me@onev.cat
    0 码力 | 64 页 | 4.32 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-09机器学习-支持向量机

    线性不可分支持向量机 4 1.支持向量机概述 支 持 向 量 机 ( Support Vector Machine, SVM ) 是 一 类 按 监 督 学 习 ( supervised learning)方式对数据进行二元分类的广义线性 分类器(generalized linear classifier),其决 策边界是对学习样本求解的最大边距超平面( maximum-margin hyperplane) 28 参考文献 [1] CORTES C, VAPNIK V. Support-vector networks[J]. Machine learning, 1995, 20(3): 273–297. [2] Andrew Ng. Machine Learning[EB/OL]. StanfordUniversity,2014.https://www.coursera.org/course/ml Tibshirani R., Friedman J. The Elements of Statistical Learning[M]. New York: Springer,2001. [5] CHRISTOPHER M. BISHOP. Pattern Recognition and Machine Learning[M]. New York: Springer,2006. [6] Stephen Boyd
    0 码力 | 29 页 | 1.51 MB | 1 年前
    3
  • pdf文档 QCon北京2018-《从键盘输入到神经网络--深度学习在彭博的应用》-李碧野

    ine_learning_algorithms#/media/File:Moving_From_unknown_to_known_feature_spaces_based_on_TS-ELM_with_random_kernels_and_connections.tif https://commons.wikimedia.org/wiki/Category:Machine_learning_alg ELM_with_random_kernels_and_connections.tif https://commons.wikimedia.org/wiki/Category:Machine_learning_algorithms#/media/File:OPTICS.svg May be re-distributed in accordance with the terms of the CC-SA en © 2018 Bloomberg Finance L.P. All rights reserved. Table Detection Is Object Detection Deep learning has yielded rapid advancements in computer vision © 2018 Bloomberg Finance L.P. All rights reserved
    0 码力 | 64 页 | 13.45 MB | 1 年前
    3
共 155 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 16
前往
页
相关搜索词
DeepLearningwithPython费良宏2022美团技术年货合辑AzureNotebook产品发展核心地位以及通过VisualStudioCode最佳实践韩骏PyTorch深度学习星际争霸星际争霸人工智能人工智能深度学习入门实战54AutoEncoder编码码器编码器动手v2Swift机器机器学习王巍课程温州大学09支持向量QCon北京2018键盘输入键盘输入神经网络神经网神经网络彭博应用李碧野
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩