02 TiDB Operator 架构与实现 付业成TiDB Operator: Design & Implemention Presented by Yecheng Fu (@cofyc) PingCAP.com Agenda ● TiDB Operator 简介 ● 扩展 Kubernetes 的几种方式 ● TiDB Operator 实现 TiDB Operator 是什么 PingCAP.com Cloud Native Scaling - Handle network, hardware failures, etc. - Backup/Restore/Data migration - ... TiDB Operator TiDB PingCAP.com Kubernetes Pattern - Declarative Model - 用户描述自己的期望,提交给 Kubernetes API Server implemented TiDB Operator Kubernetes Pattern - Declarative Model PingCAP.com Operator Pattern - Extending Kubernetes TiDB Operator TiDB PD API Kubernetes API PingCAP.com Operator Pattern - Custom0 码力 | 47 页 | 1.73 MB | 6 月前3
Operator Pattern 用 Go 扩展 Kubernetes 的最佳实践Operator Pattern:用 Go 扩展 K8s 的最佳实践 吴学强 ApeCloud KubeBlocks Maintainer & 研发总监 目 录 认识我们 00 什么是 Operator 01 Operator 基础模型 02 Operator 最佳实践 03 我们是谁 云猿生(ApeCloud)是一家提供数据库内核与管理平台的基 础软件开发商. KubeBlocks 从被收购到卷王(si) 回到初(qi)心(dian) KubeBlocks Maintainer & 研发总监 free6om 什么是 Operator 第一部分 Operator 前世今生 TPR Operator CRD Operator Pattern 2015.11 2016.12 2017.12 Now K8s 1.1 版本中正式推出 TPR (ThirdPartyResource),首次尝 K8s API 的扩展性问题, 但存在诸多问题,Alpha 阶段既 夭折 CoreOS 提出 Operator 概念,用 于管理和运行基于应用程序领 域的复杂有状态应用程序。 给出了用 TPR + controller- runtime 早期版本的 sample: etcd operator K8s 1.9 版本发布,CRD进入 beta 阶段并正式取代 TPR; controller-runtime0 码力 | 21 页 | 3.06 MB | 9 月前3
SelectDB案例 从 ClickHouse 到 Apache Doris1 从 ClickHouse 到 Apache Doris,腾讯音乐内容库数据平台架构演进实践 2023/02/20SelectDB 用户案例 导读:腾讯音乐内容库数据平台旨在为应用层提供库存盘点、分群画像、指标分析、标签圈 选等内容分析服务,高效为业务赋能。目前,内容库数据平台的数据架构已经从 1.0 演进到 了 4.0 ,经历了分析引擎从 ClickHouse 到 Apache 掘等的存储和计算都是在 TDW 中进行,内容库数据平台的数据加工链路同样是在腾讯数据 仓库 TDW 上构建的。截止目前,内容库数据平台的数据架构已经从 1.0 演进到了 4.0 , 经历了分析引擎从 ClickHouse 到 Apache Doris 的替换、经历了数据架构语义层的初步引 入到深度应用,有效提高了数据时效性、降低了运维成本、解决了数据管理割裂等问题,收 益显著。接下来将为大家分享腾讯音乐内容 ODS-DWD-DWS 三层将数据整合为不同主题的标签和指标体系, DWM 集市层围绕内容对象构建大宽表,从不同主题域 DWS 表中抽取字段。 加速层:在数仓中构建的大宽表导入到加速层中,Clickhouse 作为分析引擎, Elasticsearch 作为搜索/圈选引擎。 应用层:根据场景创建 DataSet,作为逻辑视图从大宽表选取所需的标签与指标,同 时可以二次定义衍生的标签与指标。0 码力 | 12 页 | 1.55 MB | 1 年前3
ClickHouse在众安的实践Clickhouse在众安的应用实践 百亿保险数据实时分析探索 众安保险 数据智能中心 蒙强 2019年10月27日 众安保险 • 成立于2013年,是中国第一家互联网保险公司。 • 互联网保险特点: 1. 场景化 2. 高频化 3. 碎片化 • 今年上半年众安上半年服务用户3.5亿,销售保单33.3亿张。 CHAPTER 报表系统的现状 01 数据分析的最直观表现形式:报表 数据洞察与可视化 数据治理 预测分析与机器学习 CHAPTER 众安集智平台与clickhouse 02 集智平台 X-Brain AI 开放平台 计算框架 Hadoop, JStorm, Spark Streaming, Flink 离线/实时任务监控 数据、模型存储 Hive, HBase, Clickhouse, Kylin 数据接入 消 息 中 间 件 模型、 算法 模版 机器学习平台 缓解AI/机器学习带来的潜在伦理与法律担忧 全生命周期管理 追溯与可重现 洞察平台架构 Why Clickhouse? Clickhosue 性能 高效的数据导入和查询性能 开源 低成本,免费 压缩比 高度的数据压缩比,存储成本更小 面向列 真正的面向列存储, 支持高维度表 易观开源OLAP引擎测评报告 洞察数据模型+Clickhouse 使用效果 CHAPTER 使用ck对百亿数据的探索 03 背景0 码力 | 28 页 | 4.00 MB | 1 年前3
Clickhouse玩转每天千亿数据-趣头条Clickhouse玩转每天千亿数据 趣头条 王海胜 提纲 • 业务背景 • 集群现状 • 我们遇到的问题 业务背景 基于storm的实时指标的计算存在的问题 1:指标口径(SQL) -> 实时任务 2:数据的回溯 3:稳定性 业务背景 什么是我们需要的? 1:实时指标SQL化 2:数据方便回溯,数据有问题,方便恢复 3:运维需要简单 4:计算要快,在一个周期内,要完成所有的指标的计算 1:内存限制,对于一些大的查询会出现内存不够问题 2:存储限制,随着表越来多,磁盘报警不断 3:cpu限制 64G对于一些大表(每天600亿+)的处理,很容易报错,虽然有基于磁盘解决方案,但是会影响速度 clickhouse的数据目录还不支持多个数据盘,单块盘的大小限制太大 cpu需要根据实际情况而定 解决: 1:机器的内存推荐128G+ 2:采用软连接的方式,把不同的表分布到不同的盘上面,这样一台机器可以挂载更多的盘 我们遇到的问题 查询过程中clickhouse-server进程挂掉 分析: clickhouse裸奔时max_memory_usage_for_all_queries默认值为0,即不限制clickhouse内存使用 解决: clickhouse安装完成以后,在users.xml文件中配置一下max_memory_usage_for_all_queries,控制 clickhouse-server最大占用内存,避免被OS0 码力 | 14 页 | 1.10 MB | 1 年前3
ClickHouse MergeTree原理解析-朱凯ClickHouse MergeTree原理解析 朱凯@深圳 2019.10 朱 凯 远光软件 大数据事业部/平台开发部 总经理 资深架构师,腾讯云TVP专家 10多年IT从业经验,精通Java、Nodejs等语言方向 著有: 《企业级大数据平台构建:架构与实现》、 《ClickHouse原理解析与开发实战》(连载写作中) 珠海总部园 区占地面积 6 万平方米 珠海、北京、武汉 数据分区 01 / 一级索引&二级索引 02 / 数据存储 03 / 数据标记 04 / 表引擎 表引擎,是ClickHouse设计实现中的一大特色。可以说正是由表引擎,决定了一张 数据表最终的性格,它拥有何种特性、数据以何种形式被存储以及如何被加载。 ClickHouse拥有非常庞大的表引擎体系,截至到目前(19.14.6),共拥有合并树、 内存、文件、接口和其他5大类20多种。 合并树 则在MergeTree的基础之 上各有所长。 MergeTree的名称由来 MergeTree在写入一批数据时,数据总会以数据片段的形式写入磁盘,且数据 片段不可修改。为了避免片段过多,ClickHouse会通过后台线程定期合并这 些数据片段,属于相同分区的数据片段会被合成一个新的片段。这种数据片 段往复合并的特点也正是合并树的名称由来。 MergeTree的创建方式 CREATE TABLE0 码力 | 35 页 | 13.25 MB | 1 年前3
ClickHouse在B站海量数据场景的落地实践ClickHouse在B站海量数据场景的落地实践 胡甫旺 哔哩哔哩OLAP平台 目录 vClickHouse在B站 v内核 v日志 v用户行为数据分析 vFuture Work vQ&A ClickHouse在B站 B站ClickHouse应用概况 v 近400个节点,30个集群 v ⽇均1.5+万亿条数据摄⼊ v ⽇均800+万次Select请求 v 应⽤场景包括(不限于): Management) 基于ClickHouse的交互式OLAP技术架构 Cluster-01 Cluster-02 Cluster-n 。。。 ClickHouse Yuuni 定制开发的 ClickHouse-JDBC 与ClickHouse兼容的 HTTP 接口 请求管理/流量控制 查询缓存 查询分发器 查询处理器 ClickHouse 监控管理平台 元数据管理 (Rider/Spark/WaterDrop) 实时接入 (BSQL/Saber/Flink & ClickHouse JDBC) Applications 用户程序 Flink/JDBC/Go/HTTP 标签圈人 。。。 广告DMP 内容定投 内容分析 日志&Trace 平台 APM ClickHouse as Service v Berserker数据源管理: Ø 建表 Ø 修改表元数据0 码力 | 26 页 | 2.15 MB | 1 年前3
使用Rust与ClickHouse构建高效可靠的日志系统第三届中国Rust开发者大会 使用Rust与ClickHouse构建高 效可靠的日志系统 刘炜 腾讯云(专有云) • 自我介绍 • 系统介绍 • 整体架构 • 系统实现 • 遇到问题 大纲 自我介绍 • 大龄码农 • 做过嵌入式/CDN/数据库开发 • 从C/C++到Rust • 现在在腾讯云(专有云)从事日志系统的开发 自我介绍 PhoTto / image / chart 提供日志的搜索/报警/处理等功能 系统介绍 • 为什么放弃 Loki • 资源占用过大 • 统计/计算能力比较弱 • 组件过多,排查问题比较困难 • 商业使用不友好的开源协议 • 为什么选择Mencius+ClickHouse • 存储计算与业务分离 • 计算/统计能力更强 • 资源占用更小,性能更好 • 更友好的开源协议 系统介绍 • 多种接入方式 • Agent • Client • 查询 • • 写入 • 每天 100G • 磁盘 • 压缩比 1:13 • 内存 • Mencius • 200M左右 • ClickHouse • 2G以下 • 接入端 • API Gateway • 日志服务(Mencius) • 存储(ClickHouse) 整体架构 • 协议层 • 处理层 • 计算层 • 存储层 系统实现 协议层 • 支持协议 • Loki • 写入0 码力 | 19 页 | 2.66 MB | 1 年前3
ClickHouse在苏宁用户画像场景的实践ClickHouse 在苏宁用户画像场景的实践 二〇一九年十月 苏宁科技集团.大数据中心.杨兆辉 1 关亍我 苏宁科技集团大数据中心架构师 曾就职亍中兴通讯10+years ,从事大规模分布式系统研发 10+years C++、Java、Go编程经验,熟悉大数据架构、解决方案 ClickHouse Contributor Github: https://github.com/andyyzh Contents 苏宁如何使用ClickHouse ClickHouse集成Bitmap 用户画像场景实践 2 选择ClickHouse的原因 1. 速度快 2. 特性发布快 3. 软件质量高 4. 物化视图 5. 高基数查询 精确去重计数性能测试 6 ClickHouse在苏宁使用场景 OLAP平台存储引擎 -- 存储时序数据、cube加速数据,应用亍高基数查询、精确去重场景。 运维监控 -- 实时聚合分析监控数据,主要使用物化视图技术。 用户画像场景 -- 标签数据的存储、用户画像查询引擎。 7 Contents 苏宁如何使用ClickHouse ClickHouse集成Bitmap0 码力 | 32 页 | 1.47 MB | 1 年前3
腾讯 clickhouse实践 _2019丁晓坤&熊峰ClickHouse 应用实践 丁晓坤 & 熊峰 一切以用户价值为依归 2 • Clickhouse 的部署与监控管理 • Clickhouse 的应用实践 iData 目录 部署与监控管理 一切以用户价值为依归 3 1 4 部署与监控管理 1 高内存,廉价存储: 单机配置: Memory128G CPU核数24 SATA20T,RAID5 万兆网卡 一切以用户价值为依归 一切以用户价值为依归 15 业务应用实践 iData 2 一切以用户价值为依归 l 游戏数据分析的业务背景 l iData 数据分析引擎TGMars l 为什么选用ClickHouse l 平台在ClickHouse上的使用 16 业务应用实践 iData 2 腾讯游戏 数据化驱动服务 场景视图: TGlog 服务端采集 腾讯游戏 服务器 腾讯游戏 移动客户端 微信 数据类型只能支持数字类型 Ø数据量有限 数据量达到10亿级以上查询效率有所降低 Ø单表计算 不能进行多表关联计算 一切以用户价值为依归 21 业务应用实践 iData 2 为什么选择ClickHouse • SQL • OLAP • 超高性能 • 列式存储 • 统计函数 • 线性扩展 • 驱动丰富 0.817 1.883 1.168 1.417 1.15 1.7510 码力 | 26 页 | 3.58 MB | 1 年前3
共 382 条
- 1
- 2
- 3
- 4
- 5
- 6
- 39













