 深度学习与PyTorch入门实战 - 16. 什么是梯度https://github.com/tomgoldstein/loss-landscape Saddle point https://www.khanacademy.org/math/multivariable-calculus/applications-of- multivariable-derivatives/optimizing-multivariable-functions-videos/v/saddle-points0 码力 | 17 页 | 1.49 MB | 1 年前3 深度学习与PyTorch入门实战 - 16. 什么是梯度https://github.com/tomgoldstein/loss-landscape Saddle point https://www.khanacademy.org/math/multivariable-calculus/applications-of- multivariable-derivatives/optimizing-multivariable-functions-videos/v/saddle-points0 码力 | 17 页 | 1.49 MB | 1 年前3
 2022年美团技术年货 合辑Conference on Learning Representations (2018). [9] Hamilton, Will, Zhitao Ying, and Jure Leskovec. “Inductive representation learning on large graphs.” Advances in neural information processing systems 30 519-527. 2020. [15] Xu, Da, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. “Inductive representation learning on temporal graphs.” International Conference on Learning Representations on Learning Representations. ICLR, 2017. [4] Hamilton, Will, Zhitao Ying, and Jure Leskovec. “Inductive representation learning on large graphs.” Advances in neural information processing systems 300 码力 | 1356 页 | 45.90 MB | 1 年前3 2022年美团技术年货 合辑Conference on Learning Representations (2018). [9] Hamilton, Will, Zhitao Ying, and Jure Leskovec. “Inductive representation learning on large graphs.” Advances in neural information processing systems 30 519-527. 2020. [15] Xu, Da, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. “Inductive representation learning on temporal graphs.” International Conference on Learning Representations on Learning Representations. ICLR, 2017. [4] Hamilton, Will, Zhitao Ying, and Jure Leskovec. “Inductive representation learning on large graphs.” Advances in neural information processing systems 300 码力 | 1356 页 | 45.90 MB | 1 年前3
 Idris 语言文档 Version 1.3.1Nat -> Type) -> -- Property to show (P Z) -> -- Base case ((k : Nat) -> P k -> P (S k)) -> -- Inductive step (x : Nat) -> -- Show for all x P x nat_induction P p_Z p_S Z = p_Z nat_induction P p_Z p_S plus_ind n m = nat_induction (\x => Nat) m -- Base case, plus_ind Z m (\k, k_rec => S k_rec) -- Inductive step plus_ind (S k) m -- where k_rec = plus_ind k m n 奔 奯 奰 奲 奯奶 奥 奴 奨 奡奴 plus n m = plus m n0 码力 | 224 页 | 2.06 MB | 1 年前3 Idris 语言文档 Version 1.3.1Nat -> Type) -> -- Property to show (P Z) -> -- Base case ((k : Nat) -> P k -> P (S k)) -> -- Inductive step (x : Nat) -> -- Show for all x P x nat_induction P p_Z p_S Z = p_Z nat_induction P p_Z p_S plus_ind n m = nat_induction (\x => Nat) m -- Base case, plus_ind Z m (\k, k_rec => S k_rec) -- Inductive step plus_ind (S k) m -- where k_rec = plus_ind k m n 奔 奯 奰 奲 奯奶 奥 奴 奨 奡奴 plus n m = plus m n0 码力 | 224 页 | 2.06 MB | 1 年前3
 动手学深度学习 v2.0等长边越多,就越接近圆。这个过程也被称为逼近法(method of exhaustion)。 图2.4.1: 用逼近法求圆的面积 事实上,逼近法就是积分(integral calculus)的起源。2000多年后,微积分的另一支,微分(differential calculus)被发明出来。在微分学最重要的应用是优化问题,即考虑如何把事情做到最好。正如在 2.3.10节中 讨论的那样,这种问题在深度学习中是无处不在的。 6294–6305). 774 Bibliography [McCulloch & Pitts, 1943] McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115–1330 码力 | 797 页 | 29.45 MB | 1 年前3 动手学深度学习 v2.0等长边越多,就越接近圆。这个过程也被称为逼近法(method of exhaustion)。 图2.4.1: 用逼近法求圆的面积 事实上,逼近法就是积分(integral calculus)的起源。2000多年后,微积分的另一支,微分(differential calculus)被发明出来。在微分学最重要的应用是优化问题,即考虑如何把事情做到最好。正如在 2.3.10节中 讨论的那样,这种问题在深度学习中是无处不在的。 6294–6305). 774 Bibliography [McCulloch & Pitts, 1943] McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115–1330 码力 | 797 页 | 29.45 MB | 1 年前3
 【PyTorch深度学习-龙龙老师】-测试版202112预览版202112 2.5 参考文献 11 2.5 参考文献 [1] W. S. McCulloch 和 W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” The bulletin of mathematical biophysics, 卷 5, pp.0 码力 | 439 页 | 29.91 MB | 1 年前3 【PyTorch深度学习-龙龙老师】-测试版202112预览版202112 2.5 参考文献 11 2.5 参考文献 [1] W. S. McCulloch 和 W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” The bulletin of mathematical biophysics, 卷 5, pp.0 码力 | 439 页 | 29.91 MB | 1 年前3
 Kotlin 1.9.10 官方文档 中文版
template, remove all manual dependsOn() calls and source sets created with by creating constructions. To check the list of all default source sets, see the full hierarchy template. If you want and release build types or custom flavors like demo and full . It made them accessible by constructions like val androidDebug by getting { ... } . In the new Android source set layout, those source0 码力 | 3753 页 | 29.69 MB | 1 年前3 Kotlin 1.9.10 官方文档 中文版
template, remove all manual dependsOn() calls and source sets created with by creating constructions. To check the list of all default source sets, see the full hierarchy template. If you want and release build types or custom flavors like demo and full . It made them accessible by constructions like val androidDebug by getting { ... } . In the new Android source set layout, those source0 码力 | 3753 页 | 29.69 MB | 1 年前3
 Kotlin 官方文档中文版  v1.9hierarchy template, remove all manual dependsOn() calls and source sets created with by creating constructions. To check the list of all default source sets, see the full hierarchy template. If you want and release build types or custom flavors like demo and full . It made them accessible by constructions like val androidDebug by getting { ... } . In the new Android source set layout, those source0 码力 | 2049 页 | 45.06 MB | 1 年前3 Kotlin 官方文档中文版  v1.9hierarchy template, remove all manual dependsOn() calls and source sets created with by creating constructions. To check the list of all default source sets, see the full hierarchy template. If you want and release build types or custom flavors like demo and full . It made them accessible by constructions like val androidDebug by getting { ... } . In the new Android source set layout, those source0 码力 | 2049 页 | 45.06 MB | 1 年前3
 Blender v4.1 ManualSobel, Prewitt and Kirsch all perform edge detection (in slightly different ways) based on vector calculus and set theory equations. Soften: Slightly blurs the image. Box Sharpen: Increases the contrast Alembic is focused on efficiently storing the computed results of complex procedural geometric constructions. It is very specifically not concerned with storing the complex dependency graph of procedural0 码力 | 6263 页 | 303.71 MB | 1 年前3 Blender v4.1 ManualSobel, Prewitt and Kirsch all perform edge detection (in slightly different ways) based on vector calculus and set theory equations. Soften: Slightly blurs the image. Box Sharpen: Increases the contrast Alembic is focused on efficiently storing the computed results of complex procedural geometric constructions. It is very specifically not concerned with storing the complex dependency graph of procedural0 码力 | 6263 页 | 303.71 MB | 1 年前3
共 8 条
- 1














