积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(162)综合其他(89)云计算&大数据(75)系统运维(53)数据库(43)区块链(42)Linux(33)Weblate(32)OpenShift(27)Go(24)

语言

全部中文(简体)(442)

格式

全部PDF文档 PDF(384)其他文档 其他(53)PPT文档 PPT(5)
 
本次搜索耗时 0.090 秒,为您找到相关结果约 442 个.
  • 全部
  • 后端开发
  • 综合其他
  • 云计算&大数据
  • 系统运维
  • 数据库
  • 区块链
  • Linux
  • Weblate
  • OpenShift
  • Go
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 云原生开放智能网络代理 MOSN

    云原生开放智能网络代理 MOSN 金融级云原生架构助推器 肖涵(涵畅) 蚂蚁金服高级技术专家 SOFAMosn 项目负责人1/10 MOSN,云原生时代的安全网络代理 Service Mesh 控制面 Galley Pilot Pod SOFA 服务 MSON Kubernetes TLS,国密 服务鉴权 Mirror Ingress Controller Pod Msg 项目名开源 2018年11月 内部正式启动落地 Service Mesh 2019年4月 落地第一个应用 2019年618 核心支付链路灰度 2019年双十一 核心支付链路全覆盖5/10 开放是手段,不是目的 加拉帕戈斯综合征 水族馆与大自然的杀人鲸 德尔菲法6/10 CNCF Landscape7/10 SOFAMosn GitHub Insights8/10 从 SOFAMosn RocketMQ、gRPC、HTTP3、 MQTT、QUIC、TLS1.3 等 多协议 支持模块化 自适应限流 多协议深度扩展能力 多进程 WAF WebAssembly 兼容用户态协议栈 Lua 支持 核心和开放能力 适配 Istio,兼容 UDAP 协议 Zookeeper,Etcd Open Tracing, Jaeger Prometheus, StatsD 生态融合 支持 K8s Ingress,Edge
    0 码力 | 12 页 | 1.39 MB | 6 月前
    3
  • pdf文档 K8S安装部署开放服务

    0 码力 | 54 页 | 1.23 MB | 1 年前
    3
  • pdf文档 RISC-V 开放架构设计之道 1.0.0

    对本书的称赞 这本恰逢其时的书简明扼要地介绍了简洁、免费、开放的 RISC-V,一款正在许多 不同的计算领域迅速普及的 ISA。书中包含很多计算机体系结构方面的深刻见解, 同时也阐释了我们在设计 RISC-V 时做出的特定决策。我能想象本书将成为许多 RISC-V 从业者家喻户晓的参考指南。 ——克尔斯泰·阿桑诺维奇(Krste Asanović),加州大学伯克利分校教授,四位 RISC-V 添加了向量寄存器v0-v31,向量谓词寄存器vp0-vp7,和向量长度寄存器vl。 RV64添加了若干指令:RVM 5条,RVA 11条,RVF 4条,RVD 6条,RVV 0条。 RISC-V 开放架构设计之道 1.0.0 (原著 The RISC-V Reader: An Open Architecture Atlas) 大卫·帕特森 安德鲁·沃特曼 著 勾凌睿 陈璐 刘志刚 译 余子濠 被 《MIT 科技评论》评选为 2023 年 “全球十大突破性技术”,评价为:“芯片设计正走向 开放,灵活,开源的 RISC-V 有望成为改变一切的芯片设计”。 开源 RISC-V 的出现顺应未来新一代信息技术的需求,其精简指令集符合 CPU 架构发展趋势,它所采用的开源模式也符合科学开放精神,大大降低了芯片产业门槛, 人才培养便捷,研发周期缩短,这些都使其后续发展具备强大生命力。 为
    0 码力 | 223 页 | 15.31 MB | 1 年前
    3
  • pdf文档 MoonBit月兔编程语言 现代编程思想 第十课 哈希表与闭包

    解决哈希表的冲突 直接寻址(分离链接):同⼀索引下⽤另⼀数据结构存储 列表 ⼆叉平衡搜索树等 开放寻址 线性探查:当发现冲突后,索引递增,直到查找空位放⼊ ⼆次探查(索引递增 )等 4 哈希表:直接寻址 当发⽣哈希/索引冲突时,将相同索引的数据装进⼀个数据结构中 例:添加0、5(哈希值分别为0、5)⾄⻓度为5的数组中时: 0 5 5 哈希表:直接寻址 哈希表结构 1. size : Int // 哈希表键值对数量,动态维护 14. } 6 哈希表:直接寻址 添加/更新操作 添加时,根据键的哈希计算出应当存放的位置 遍历集合查找键 如果找到,修改值 否则,添加键值对 删除操作类同 0 3 1. 计算对应数组索引 4 9 2.遍历对应数据结构 7 哈希表:直接寻址 添加/更新操作 1. fn put[K : Hash + Eq, V](map resize() 20. } 21. } 8 哈希表:直接寻址 虽然不存在数组⽤尽的问题,但仍需要扩容重新分配 负载:键值对数量与数组⻓度的⽐值 当负载上升,哈希/索引冲突变多,链表增⻓,增查改删操作时间增⻓ 解决⽅案:当负载超过阈值,重新分配更⼤的数组 阈值过⾼:寻址遍历时间变⻓ 阈值过低:扩容分配时间变⻓ 9 哈希表:直接寻址 删除操作 1. fn remove[K : Hash
    0 码力 | 27 页 | 448.83 KB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 C++ 版

    字节,在大多数编程语言中取决于特定的字符编码方法,详见“字 符编码”章节。 ‧ 即使表示布尔量仅需 1 位(0 或 1),它在内存中通常也存储为 1 字节。这是因为现代计算机 CPU 通常 将 1 字节作为最小寻址内存单元。 那么,基本数据类型与数据结构之间有什么联系呢?我们知道,数据结构是在计算机中组织与存储数据的方 式。这句话的主语是“结构”而非“数据”。 如果想表示“一排数字”,我们自然会想到使用数 以采用以下策略。 1. 改良哈希表数据结构,使得哈希表可以在出现哈希冲突时正常工作。 2. 仅在必要时,即当哈希冲突比较严重时,才执行扩容操作。 哈希表的结构改良方法主要包括“链式地址”和“开放寻址”。 6.2.1 链式地址 在原始哈希表中,每个桶仅能存储一个键值对。链式地址(separate chaining)将单个元素转换为链表,将键 值对作为链表节点,将所有发生冲突的键值对都存储在同一链表中。图 树”或“红黑树”,从而 将查询操作的时间复杂度优化至 ?(log ?) 。 6.2.2 开放寻址 开放寻址(open addressing)不引入额外的数据结构,而是通过“多次探测”来处理哈希冲突,探测方式主 要包括线性探测、平方探测和多次哈希等。 第 6 章 哈希表 hello‑algo.com 125 下面以线性探测为例,介绍开放寻址哈希表的工作机制。 1. 线性探测 线性探测采用固定步长的线性搜索
    0 码力 | 379 页 | 18.47 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 C#版

    字节,在大多数编程语言中取决于特定的字符编码方法,详见“字 符编码”章节。 ‧ 即使表示布尔量仅需 1 位(0 或 1),它在内存中通常也存储为 1 字节。这是因为现代计算机 CPU 通常 将 1 字节作为最小寻址内存单元。 那么,基本数据类型与数据结构之间有什么联系呢?我们知道,数据结构是在计算机中组织与存储数据的方 式。这句话的主语是“结构”而非“数据”。 如果想表示“一排数字”,我们自然会想到使用数 以采用以下策略。 1. 改良哈希表数据结构,使得哈希表可以在出现哈希冲突时正常工作。 2. 仅在必要时,即当哈希冲突比较严重时,才执行扩容操作。 哈希表的结构改良方法主要包括“链式地址”和“开放寻址”。 6.2.1 链式地址 在原始哈希表中,每个桶仅能存储一个键值对。链式地址(separate chaining)将单个元素转换为链表,将键 值对作为链表节点,将所有发生冲突的键值对都存储在同一链表中。图 很差。此时可以将链表转换为“AVL 树”或“红黑树”,从而 将查询操作的时间复杂度优化至 ?(log ?) 。 6.2.2 开放寻址 开放寻址(open addressing)不引入额外的数据结构,而是通过“多次探测”来处理哈希冲突,探测方式主 要包括线性探测、平方探测和多次哈希等。 下面以线性探测为例,介绍开放寻址哈希表的工作机制。 1. 线性探测 线性探测采用固定步长的线性搜索来进行探测,其操作方法与普通哈希表有所不同。
    0 码力 | 378 页 | 18.47 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 Dart版

    字节,在大多数编程语言中取决于特定的字符编码方法,详见“字 符编码”章节。 ‧ 即使表示布尔量仅需 1 位(0 或 1),它在内存中通常也存储为 1 字节。这是因为现代计算机 CPU 通常 将 1 字节作为最小寻址内存单元。 那么,基本数据类型与数据结构之间有什么联系呢?我们知道,数据结构是在计算机中组织与存储数据的方 式。这句话的主语是“结构”而非“数据”。 如果想表示“一排数字”,我们自然会想到使用数 以采用以下策略。 1. 改良哈希表数据结构,使得哈希表可以在出现哈希冲突时正常工作。 2. 仅在必要时,即当哈希冲突比较严重时,才执行扩容操作。 哈希表的结构改良方法主要包括“链式地址”和“开放寻址”。 6.2.1 链式地址 在原始哈希表中,每个桶仅能存储一个键值对。链式地址(separate chaining)将单个元素转换为链表,将键 值对作为链表节点,将所有发生冲突的键值对都存储在同一链表中。图 很差。此时可以将链表转换为“AVL 树”或“红黑树”,从而 将查询操作的时间复杂度优化至 ?(log ?) 。 6.2.2 开放寻址 开放寻址(open addressing)不引入额外的数据结构,而是通过“多次探测”来处理哈希冲突,探测方式主 要包括线性探测、平方探测和多次哈希等。 下面以线性探测为例,介绍开放寻址哈希表的工作机制。 1. 线性探测 线性探测采用固定步长的线性搜索来进行探测,其操作方法与普通哈希表有所不同。
    0 码力 | 378 页 | 18.45 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 Go版

    字节,在大多数编程语言中取决于特定的字符编码方法,详见“字 符编码”章节。 ‧ 即使表示布尔量仅需 1 位(0 或 1),它在内存中通常也存储为 1 字节。这是因为现代计算机 CPU 通常 将 1 字节作为最小寻址内存单元。 那么,基本数据类型与数据结构之间有什么联系呢?我们知道,数据结构是在计算机中组织与存储数据的方 式。这句话的主语是“结构”而非“数据”。 如果想表示“一排数字”,我们自然会想到使用数 以采用以下策略。 1. 改良哈希表数据结构,使得哈希表可以在出现哈希冲突时正常工作。 2. 仅在必要时,即当哈希冲突比较严重时,才执行扩容操作。 哈希表的结构改良方法主要包括“链式地址”和“开放寻址”。 6.2.1 链式地址 在原始哈希表中,每个桶仅能存储一个键值对。链式地址(separate chaining)将单个元素转换为链表,将键 值对作为链表节点,将所有发生冲突的键值对都存储在同一链表中。图 树”或“红黑树”,从而 将查询操作的时间复杂度优化至 ?(log ?) 。 6.2.2 开放寻址 开放寻址(open addressing)不引入额外的数据结构,而是通过“多次探测”来处理哈希冲突,探测方式主 要包括线性探测、平方探测和多次哈希等。 第 6 章 哈希表 hello‑algo.com 123 下面以线性探测为例,介绍开放寻址哈希表的工作机制。 1. 线性探测 线性探测采用固定步长的线性搜索
    0 码力 | 383 页 | 18.48 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 Java版

    字节,在大多数编程语言中取决于特定的字符编码方法,详见“字 符编码”章节。 ‧ 即使表示布尔量仅需 1 位(0 或 1),它在内存中通常也存储为 1 字节。这是因为现代计算机 CPU 通常 将 1 字节作为最小寻址内存单元。 那么,基本数据类型与数据结构之间有什么联系呢?我们知道,数据结构是在计算机中组织与存储数据的方 式。这句话的主语是“结构”而非“数据”。 如果想表示“一排数字”,我们自然会想到使用数 以采用以下策略。 1. 改良哈希表数据结构,使得哈希表可以在出现哈希冲突时正常工作。 2. 仅在必要时,即当哈希冲突比较严重时,才执行扩容操作。 哈希表的结构改良方法主要包括“链式地址”和“开放寻址”。 6.2.1 链式地址 在原始哈希表中,每个桶仅能存储一个键值对。链式地址(separate chaining)将单个元素转换为链表,将键 值对作为链表节点,将所有发生冲突的键值对都存储在同一链表中。图 很差。此时可以将链表转换为“AVL 树”或“红黑树”,从而 将查询操作的时间复杂度优化至 ?(log ?) 。 6.2.2 开放寻址 开放寻址(open addressing)不引入额外的数据结构,而是通过“多次探测”来处理哈希冲突,探测方式主 要包括线性探测、平方探测和多次哈希等。 下面以线性探测为例,介绍开放寻址哈希表的工作机制。 1. 线性探测 线性探测采用固定步长的线性搜索来进行探测,其操作方法与普通哈希表有所不同。
    0 码力 | 378 页 | 18.47 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 JavaScript版

    字节,在大多数编程语言中取决于特定的字符编码方法,详见“字 符编码”章节。 ‧ 即使表示布尔量仅需 1 位(0 或 1),它在内存中通常也存储为 1 字节。这是因为现代计算机 CPU 通常 将 1 字节作为最小寻址内存单元。 那么,基本数据类型与数据结构之间有什么联系呢?我们知道,数据结构是在计算机中组织与存储数据的方 式。这句话的主语是“结构”而非“数据”。 如果想表示“一排数字”,我们自然会想到使用 以采用以下策略。 1. 改良哈希表数据结构,使得哈希表可以在出现哈希冲突时正常工作。 2. 仅在必要时,即当哈希冲突比较严重时,才执行扩容操作。 哈希表的结构改良方法主要包括“链式地址”和“开放寻址”。 6.2.1 链式地址 在原始哈希表中,每个桶仅能存储一个键值对。链式地址(separate chaining)将单个元素转换为链表,将键 值对作为链表节点,将所有发生冲突的键值对都存储在同一链表中。图 很差。此时可以将链表转换为“AVL 树”或“红黑树”,从而 将查询操作的时间复杂度优化至 ?(log ?) 。 6.2.2 开放寻址 开放寻址(open addressing)不引入额外的数据结构,而是通过“多次探测”来处理哈希冲突,探测方式主 要包括线性探测、平方探测和多次哈希等。 下面以线性探测为例,介绍开放寻址哈希表的工作机制。 1. 线性探测 线性探测采用固定步长的线性搜索来进行探测,其操作方法与普通哈希表有所不同。
    0 码力 | 379 页 | 18.46 MB | 1 年前
    3
共 442 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 45
前往
页
相关搜索词
原生开放智能网络代理MOSNK8S安装部署服务RISC架构构设设计架构设计之道1.0MoonBit编程语言编程语言现代思想第十十课第十课哈希表与闭包Hello算法1.1C++C#DartGoJavaJavaScript
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩