Hadoop 迁移到阿里云MaxCompute 技术方案报表等大数据应用。我们常见的大数据架构 的逻辑组件关系如下图所示: 这些逻辑组件包括: 数据源:数据源包括关系型数据库、日志文件、实时消息等。 数据存储:面向海量数据存储的分布式文件存储服务,支持 结构化数据和非结构数据数据存 储,我们也常称之为数据湖。如 HDFS、对象存储服务等。 批处理:由于大数据场景必须处理大规模的数据集,批处理往往需要从数据存储中读取大量 MaxCompute 产品组件 特性介绍 数据存储 MaxCompute 表 (基于盘古分布式存储) MaxCompute 支持大规模计算存储,适用于 TB 以上规 模的存储及计算需求,最大可达 EB 级别。同一个 MaxCompute 项目支持企业从创业团队发展到独角兽的 数据规模需求; 数据分布式存储,多副本冗余,数据存储对外仅开放表的 操作接口,不提供文件系统访问接口 自研 PAI 提供了深度学习框架、Notebook 开发 环境、GPU 计算资源、模型在线部署的弹性预测服务。 MaxCompute 的数据对 PAI 产品无缝集成。 存储 Pangu 阿里自研分布式存储服务,类似 HDFS。MaxCompute 对外目前只暴露表接口,不能直接访问文件系统。 Alibaba Cloud MaxCompute 解决方案 15 资源调度 Fuxi0 码力 | 59 页 | 4.33 MB | 1 年前3
Curve核心组件之mds – 网易数帆Curve核心组件之 MDS 陈威Curve 是高性能、高可用、高可靠的分布式存储系统 • 高性能、低延迟 • 可支撑储场景:块存储、对象存储、云原生数据库、EC等 • 当前实现了高性能块存储,对接OpenStack和 K8s 网易内部线上无故障稳定运行一年多 • 已开源 • github主页: https://opencurve.github.io/ • github代码仓库: https://github Scheduler: 调度模块。用于自动容错和负载均衡。TOPOLOGY topology用于管理和组织机器,利用底层机器的放置、网络的规划以面向业务提供如下功能和非功能需求。 1. 故障域的隔离:比如副本的放置分布在不同机器,不同机架,或是不同的交换机下面。 2. 隔离和共享:不同用户的数据可以实现固定物理资源的隔离和共享。 • pool: 用于实现对机器资源进行物理隔离,server不能跨 Pool交 Namespace的文件的目录层次关系如右图。 文件的元数据以KV的方式存储。 • Key:ParentID + “/”+ BaseName; • Value:自身的文件ID。 这种方式可以很好地平衡几个需求: • 文件列目录:列出目录下的所有文件和目 录 • 文件查找:查找一个具体的文件 • 目录重命名:对一个目录/文件进行重命名 当前元数据信息编码之后存储在 etcd 中。COPYSET Curve系统中数0 码力 | 23 页 | 1.74 MB | 6 月前3
共 2 条
- 1













