积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(17)后端开发(15)Python(14)Conda(14)机器学习(9)数据库(6)Greenplum(6)边缘计算(4)Pandas(3)综合其他(2)

语言

全部英语(40)

格式

全部PDF文档 PDF(38)其他文档 其他(2)
 
本次搜索耗时 0.038 秒,为您找到相关结果约 40 个.
  • 全部
  • 云计算&大数据
  • 后端开发
  • Python
  • Conda
  • 机器学习
  • 数据库
  • Greenplum
  • 边缘计算
  • Pandas
  • 综合其他
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyTorch Tutorial

    PyTorch Tutorial Willie Chang Pranay Manocha Installing PyTorch • ???????????? On your own computer • Anaconda/Miniconda: conda install pytorch -c pytorch • Others via pip: pip3 install torch • ?? _64.sh • ./Miniconda3-latest-Linux-x86_64.sh • After Miniconda is installed: conda install pytorch -c pytorch Writing code • Up to you; feel free to use emacs, vim, PyCharm, etc. if you want. • Our recommendations: Python files can be run like Jupyter notebooks by delimiting cells/sections with #%% • Debugging PyTorch code is just like debugging any other Python code: see Piazza @108 for info. Also try Jupyter
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 PyTorch Brand Guidelines

    Brand Guidelines PyTorch Brand Guidelines What is PyTorch? PyTorch is an open source machine learning framework that accelerates the path from research prototyping to production deployment. Learn more at PyTorch.org Please only use the PyTorch name and marks when accurately referencing the PyTorch Foundation or its software projects. When referring referring to our marks, please include the following attribution statement: 
 “PyTorch, the PyTorch logo and any related marks are trademarks of The Linux Foundation.” Find the full Trademark Policy at
    0 码力 | 12 页 | 34.16 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    RN-08516-001_v23.07 | July 2023 PyTorch Release Notes PyTorch RN-08516-001_v23.07 | ii Table of Contents Chapter 1. PyTorch Overview..................................................... ...... 2 Chapter 3. Running PyTorch................................................................................................................ 3 Chapter 4. PyTorch Release 23.07................ .............. 5 Chapter 5. PyTorch Release 23.06..................................................................................................13 Chapter 6. PyTorch Release 23.05................
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 Machine Learning Pytorch Tutorial

    Machine Learning Pytorch Tutorial TA : 曾元(Yuan Tseng) 2022.02.18 Outline ● Background: Prerequisites & What is Pytorch? ● Training & Testing Neural Networks in Pytorch ● Dataset & Dataloader ● Tensors videos from last year ■ ref: link1, link2 Some knowledge of NumPy will also be useful! What is PyTorch? ● An machine learning framework in Python. ● Two main features: ○ N-dimensional Tensor computation Guide for training/validation/testing can be found here. Training & Testing Neural Networks - in Pytorch Validation Testing Training Load Data Step 1. torch.utils.data.Dataset & torch.utils.data.DataLoader
    0 码力 | 48 页 | 584.86 KB | 1 年前
    3
  • pdf文档 rwcpu8 Instruction Install miniconda pytorch

    Miniconda and PyTorch on rwcpu8.cse.ust.hk Using Global Miniconda and PyTorch If you don't want to install Miniconda and PyTorch yourself, you can use the global Miniconda and PyTorch installed at at /export/data/miniconda3 . 1. Initialize Miniconda: 2. If you want to use PyTorch, activate the pytorch conda environment: 3. There is also a conda environment for TensorFlow 2: 4. After you activate activate the corresponding environment, you should be able to run Python scripts that uses PyTorch/TensorFlow by the python command: Installing Your Own Miniconda 1. Download Miniconda installer.
    0 码力 | 3 页 | 75.54 KB | 1 年前
    3
  • pdf文档 BAETYL 0.1.6 Documentation

    third-party libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 13.2 Import Pytorch third-party libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 14 document is MQTTBox. • In this document, the third-party libraries we’ll import are requests and Pytorch. • In this article, the service created based on the Hub module is called localhub service. And https://baetyl.io 13.2 Import Pytorch third-party libraries Pytorch is a widely used deep learning framework for machine learning. We can import a third-party library Pytorch to use its functions. How to
    0 码力 | 120 页 | 7.27 MB | 1 年前
    3
  • epub文档 BAETYL 0.1.6 Documentation

    to import third-party libraries for Python runtime Import requests third-party libraries Import Pytorch third-party libraries How to import third-party libraries for Node runtime Import Lodash third-party third-party libraries we’ll import are requests [https://pypi.org/project/requests] and Pytorch [https://pytorch.org/]. In this article, the service created based on the Hub module is called localhub service https://baetyl.io Import Pytorch third-party libraries Pytorch is a widely used deep learning framework for machine learning. We can import a third-party library Pytorch [https://pytorch.org/] to use its functions
    0 码力 | 119 页 | 11.46 MB | 1 年前
    3
  • pdf文档 BAETYL 1.0.0 Documentation

    third-party libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 14.2 Import Pytorch third-party libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 15 document is MQTTBox. • In this document, the third-party libraries we’ll import are requests and Pytorch. • In this article, the service created based on the Hub module is called localhub service. And https://baetyl.io 14.2 Import Pytorch third-party libraries Pytorch is a widely used deep learning framework for machine learning. We can import a third-party library Pytorch to use its functions. How to
    0 码力 | 145 页 | 9.31 MB | 1 年前
    3
  • epub文档 BAETYL 1.0.0 Documentation

    third-party libraries we’ll import are requests [https://pypi.org/project/requests] and Pytorch [https://pytorch.org/]. In this article, the service created based on the Hub module is called localhub service https://baetyl.io Import Pytorch third-party libraries Pytorch is a widely used deep learning framework for machine learning. We can import a third-party library Pytorch [https://pytorch.org/] to use its functions import it, as shown below: Step 1: change path to the directory of Python scripts, then download Pytorch package and its dependency packages(PIL、caffee2、numpy、six、 torchvision) cd /directory/of/Python/script
    0 码力 | 135 页 | 15.44 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    build and leverage efficient models. This includes the model training framework, such as Tensorflow, PyTorch, etc.. Often these frameworks will be paired with the tools required specifically for deploying efficient models on mobile devices. Similarly, TFLite Micro helps in running these models on DSPs. PyTorch offers PyTorch Mobile for quantizing and exporting models for inference on mobile and embedded devices. and having integration with libraries like GEMMLOWP and XNNPACK for fast inference. Similarly, PyTorch uses QNNPACK to support quantized operations. Refer to Figure 1-17 for an illustration of how infrastructure
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
共 40 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
PyTorchTutorialBrandGuidelinesReleaseNotesMachineLearningPytorchrwcpu8InstructionInstallminicondapytorchBAETYL0.1Documentation1.0EfficientDeepBookEDLChapterIntroduction
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩