 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniquesfamous MNIST dataset! Figure 2-10: Latency v/s accuracy trade off for unoptimized representation (float) and quantized representation (8-bit) using a convolutional net trained on the CIFAR-10 dataset. Project: through quite a bit of theory and exercises on quantization. It is time to put them into practice. MNIST (Modified NIST) handwritten digit recognition is a well-known problem in the deep learning field. network should be able to learn. MNIST (Modified NIST) handwritten recognition is one of the most commonly solved problems by beginners in the deep learning field. The MNIST dataset was assembled and processed0 码力 | 33 页 | 1.96 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniquesfamous MNIST dataset! Figure 2-10: Latency v/s accuracy trade off for unoptimized representation (float) and quantized representation (8-bit) using a convolutional net trained on the CIFAR-10 dataset. Project: through quite a bit of theory and exercises on quantization. It is time to put them into practice. MNIST (Modified NIST) handwritten digit recognition is a well-known problem in the deep learning field. network should be able to learn. MNIST (Modified NIST) handwritten recognition is one of the most commonly solved problems by beginners in the deep learning field. The MNIST dataset was assembled and processed0 码力 | 33 页 | 1.96 MB | 1 年前3
 keras tutorialcompile and train the Keras models. Let us apply our learning and create a simple MPL based ANN. Dataset module Before creating a model, we need to choose a problem, need to collect the required data the data and return the data as training and test set. Let us check the data provided by Keras dataset module. The data available in the module are as follows,  CIFAR10 small image classification topics classification  MNIST database of handwritten digits  Fashion-MNIST database of fashion articles  Boston housing price regression dataset Let us use the MNIST database of handwritten0 码力 | 98 页 | 1.57 MB | 1 年前3 keras tutorialcompile and train the Keras models. Let us apply our learning and create a simple MPL based ANN. Dataset module Before creating a model, we need to choose a problem, need to collect the required data the data and return the data as training and test set. Let us check the data provided by Keras dataset module. The data available in the module are as follows,  CIFAR10 small image classification topics classification  MNIST database of handwritten digits  Fashion-MNIST database of fashion articles  Boston housing price regression dataset Let us use the MNIST database of handwritten0 码力 | 98 页 | 1.57 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniquesstart with data augmentation in the next section. Data Augmentation Data Augmentation is a set of dataset manipulation techniques to improve sample and label efficiencies of deep learning models. Over the help to overcome dataset shortcomings like: small size, skewed samples, or partial coverage. It is fair to ask: why don’t we just get more data? Consider the following examples. MNIST dataset contains 70,000 the pictures of their flukes2. The primary challenge with that dataset is the limited number of sample pictures for each whale. The dataset contains over 5000 individuals with more than 2000 having just0 码力 | 56 页 | 18.93 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniquesstart with data augmentation in the next section. Data Augmentation Data Augmentation is a set of dataset manipulation techniques to improve sample and label efficiencies of deep learning models. Over the help to overcome dataset shortcomings like: small size, skewed samples, or partial coverage. It is fair to ask: why don’t we just get more data? Consider the following examples. MNIST dataset contains 70,000 the pictures of their flukes2. The primary challenge with that dataset is the limited number of sample pictures for each whale. The dataset contains over 5000 individuals with more than 2000 having just0 码力 | 56 页 | 18.93 MB | 1 年前3
 Notes for install Keras on Anaconda3installation works: library(keras) mnist <- dataset_mnist() train_images <- mnist$train$x train_labels <- mnist$train$y test_images <- mnist$test$x test_labels <- mnist$test$y #data structure checking0 码力 | 3 页 | 654.13 KB | 8 月前3 Notes for install Keras on Anaconda3installation works: library(keras) mnist <- dataset_mnist() train_images <- mnist$train$x train_labels <- mnist$train$y test_images <- mnist$test$x test_labels <- mnist$test$y #data structure checking0 码力 | 3 页 | 654.13 KB | 8 月前3
 Keras: 基于 Python 的深度学习库. . . . . . . . . . . . . . . . . . . 155 12.5 MNIST 手写字符数据集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 12.6 Fashion-MNIST 时尚物品数据集 . . . . . . . . . . . . . . . . . . . . 小图片分类:具有实时数据增强的卷积神经网络 (CNN) 快速开始 11 • IMDB 电影评论情感分类:基于词序列的 LSTM • Reuters 新闻主题分类:多层感知器 (MLP) • MNIST 手写数字分类:MLP 和 CNN • 基于 LSTM 的字符级文本生成 … 等等。 3.1.5.1 基于多层感知器 (MLP) 的 softmax 多分类: import keras from padding='same')(x) # 返回 x + y z = keras.layers.add([x, y]) 3.2.7.3 共享视觉模型 该模型在两个输入上重复使用同一个图像处理模块,以判断两个 MNIST 数字是否为相同的数字。 from keras.layers import Conv2D, MaxPooling2D, Input, Dense, Flatten from keras.models0 码力 | 257 页 | 1.19 MB | 1 年前3 Keras: 基于 Python 的深度学习库. . . . . . . . . . . . . . . . . . . 155 12.5 MNIST 手写字符数据集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 12.6 Fashion-MNIST 时尚物品数据集 . . . . . . . . . . . . . . . . . . . . 小图片分类:具有实时数据增强的卷积神经网络 (CNN) 快速开始 11 • IMDB 电影评论情感分类:基于词序列的 LSTM • Reuters 新闻主题分类:多层感知器 (MLP) • MNIST 手写数字分类:MLP 和 CNN • 基于 LSTM 的字符级文本生成 … 等等。 3.1.5.1 基于多层感知器 (MLP) 的 softmax 多分类: import keras from padding='same')(x) # 返回 x + y z = keras.layers.add([x, y]) 3.2.7.3 共享视觉模型 该模型在两个输入上重复使用同一个图像处理模块,以判断两个 MNIST 数字是否为相同的数字。 from keras.layers import Conv2D, MaxPooling2D, Input, Dense, Flatten from keras.models0 码力 | 257 页 | 1.19 MB | 1 年前3
 03 Experiments, Reproducibility, and Projects - Introduction to Scientific Writing WS2021/22Writing – 03 Experiments & Reproducibility Matthias Boehm, Graz University of Technology, WS 2021/22 Dataset Selection  Synthetic Data  Generate data with specific data characteristics  Systematic evaluation Matrix Collection: https://sparse.tamu.edu/  Google dataset search: https://datasetsearch.research.google.com/  Common Datasets in ML: ImageNet, Mnist, CIFAR, KDD, Criteo  Common Datasets in DM: Census votes on correctness Reproducibility and RDM [Xiao Xiang Zhu et al: So2Sat LCZ42: A Benchmark Dataset for the Classification of Global Local Climate Zones. GRSM 2020] 23 706.015 Introduction to Scientific0 码力 | 31 页 | 1.38 MB | 1 年前3 03 Experiments, Reproducibility, and Projects - Introduction to Scientific Writing WS2021/22Writing – 03 Experiments & Reproducibility Matthias Boehm, Graz University of Technology, WS 2021/22 Dataset Selection  Synthetic Data  Generate data with specific data characteristics  Systematic evaluation Matrix Collection: https://sparse.tamu.edu/  Google dataset search: https://datasetsearch.research.google.com/  Common Datasets in ML: ImageNet, Mnist, CIFAR, KDD, Criteo  Common Datasets in DM: Census votes on correctness Reproducibility and RDM [Xiao Xiang Zhu et al: So2Sat LCZ42: A Benchmark Dataset for the Classification of Global Local Climate Zones. GRSM 2020] 23 706.015 Introduction to Scientific0 码力 | 31 页 | 1.38 MB | 1 年前3
 人工智能发展史org/archive/icml2009/papers/218.pdf http://www.iro.umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf MNIST on GPU http://www.iro.umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf BOOM! 2012 ▪ 600 码力 | 54 页 | 3.87 MB | 1 年前3 人工智能发展史org/archive/icml2009/papers/218.pdf http://www.iro.umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf MNIST on GPU http://www.iro.umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf BOOM! 2012 ▪ 600 码力 | 54 页 | 3.87 MB | 1 年前3
 Reference guide for FCL units. Document version 3.2.213TDataLink.BufferCount . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 11.20.14TDataLink.DataSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 11.20.15TDataLink.DataSource TDataSource.AutoEdit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 11.23.10TDataSource.DataSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 11.23.11TDataSource.Enabled . . TDefCollection.IndexOf . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 11.28.8 TDefCollection.Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 11.28.9 TDefCollection.Updated . .0 码力 | 953 页 | 2.21 MB | 1 年前3 Reference guide for FCL units. Document version 3.2.213TDataLink.BufferCount . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 11.20.14TDataLink.DataSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 11.20.15TDataLink.DataSource TDataSource.AutoEdit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 11.23.10TDataSource.DataSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 11.23.11TDataSource.Enabled . . TDefCollection.IndexOf . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 11.28.8 TDefCollection.Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 11.28.9 TDefCollection.Updated . .0 码力 | 953 页 | 2.21 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical ReviewCorpus1 where the model needs to predict if a pair of sentences are semantically equivalent. The dataset has only 5800 labeled examples of pairs, which would be incredibly small for this task if we were pre-training and fine-tuning stages. In the figure we demonstrate pre-training with a large unlabeled dataset of animal images. The pre-trained model is then fine-tuned for downstream tasks, for example object Figure 6-1: Pre-training and fine-tuning stages. With an example of a large unlabeled animal images dataset which is used for pre-training. The pre-trained model is then used for fine-tuning for downstream0 码力 | 31 页 | 4.03 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical ReviewCorpus1 where the model needs to predict if a pair of sentences are semantically equivalent. The dataset has only 5800 labeled examples of pairs, which would be incredibly small for this task if we were pre-training and fine-tuning stages. In the figure we demonstrate pre-training with a large unlabeled dataset of animal images. The pre-trained model is then fine-tuned for downstream tasks, for example object Figure 6-1: Pre-training and fine-tuning stages. With an example of a large unlabeled animal images dataset which is used for pre-training. The pre-trained model is then used for fine-tuning for downstream0 码力 | 31 页 | 4.03 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automationproduce better models faster. Let's say that we are optimizing the validation loss, , for a given dataset on a model represented by a function with a set of hyperparameters . Further, assume that is a the winners. Let's start by importing the relevant libraries and creating a random classification dataset with 20 samples, each one assigned to one of the five target classes. import random import tensorflow Source: Hyperband In chapter 3, we trained a model to classify flowers in the oxford_flowers102 dataset. In the next section, we will retrain the same model but with a twist! Project: Oxford Flower Classification0 码力 | 33 页 | 2.48 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automationproduce better models faster. Let's say that we are optimizing the validation loss, , for a given dataset on a model represented by a function with a set of hyperparameters . Further, assume that is a the winners. Let's start by importing the relevant libraries and creating a random classification dataset with 20 samples, each one assigned to one of the five target classes. import random import tensorflow Source: Hyperband In chapter 3, we trained a model to classify flowers in the oxford_flowers102 dataset. In the next section, we will retrain the same model but with a twist! Project: Oxford Flower Classification0 码力 | 33 页 | 2.48 MB | 1 年前3
共 338 条
- 1
- 2
- 3
- 4
- 5
- 6
- 34














 
 