积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(153)云计算&大数据(95)Python(66)数据库(63)Apache Kyuubi(44)C++(42)Conan(39)Pandas(32)Django(30)nim(29)

语言

全部英语(338)

格式

全部PDF文档 PDF(287)其他文档 其他(50)PPT文档 PPT(1)
 
本次搜索耗时 0.054 秒,为您找到相关结果约 338 个.
  • 全部
  • 后端开发
  • 云计算&大数据
  • Python
  • 数据库
  • Apache Kyuubi
  • C++
  • Conan
  • Pandas
  • Django
  • nim
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    famous MNIST dataset! Figure 2-10: Latency v/s accuracy trade off for unoptimized representation (float) and quantized representation (8-bit) using a convolutional net trained on the CIFAR-10 dataset. Project: through quite a bit of theory and exercises on quantization. It is time to put them into practice. MNIST (Modified NIST) handwritten digit recognition is a well-known problem in the deep learning field. network should be able to learn. MNIST (Modified NIST) handwritten recognition is one of the most commonly solved problems by beginners in the deep learning field. The MNIST dataset was assembled and processed
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 keras tutorial

    compile and train the Keras models. Let us apply our learning and create a simple MPL based ANN. Dataset module Before creating a model, we need to choose a problem, need to collect the required data the data and return the data as training and test set. Let us check the data provided by Keras dataset module. The data available in the module are as follows,  CIFAR10 small image classification topics classification  MNIST database of handwritten digits  Fashion-MNIST database of fashion articles  Boston housing price regression dataset Let us use the MNIST database of handwritten
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    start with data augmentation in the next section. Data Augmentation Data Augmentation is a set of dataset manipulation techniques to improve sample and label efficiencies of deep learning models. Over the help to overcome dataset shortcomings like: small size, skewed samples, or partial coverage. It is fair to ask: why don’t we just get more data? Consider the following examples. MNIST dataset contains 70,000 the pictures of their flukes2. The primary challenge with that dataset is the limited number of sample pictures for each whale. The dataset contains over 5000 individuals with more than 2000 having just
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 Notes for install Keras on Anaconda3

    installation works: library(keras) mnist <- dataset_mnist() train_images <- mnist$train$x train_labels <- mnist$train$y test_images <- mnist$test$x test_labels <- mnist$test$y #data structure checking
    0 码力 | 3 页 | 654.13 KB | 8 月前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    . . . . . . . . . . . . . . . . . . . 155 12.5 MNIST 手写字符数据集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 12.6 Fashion-MNIST 时尚物品数据集 . . . . . . . . . . . . . . . . . . . . 小图片分类:具有实时数据增强的卷积神经网络 (CNN) 快速开始 11 • IMDB 电影评论情感分类:基于词序列的 LSTM • Reuters 新闻主题分类:多层感知器 (MLP) • MNIST 手写数字分类:MLP 和 CNN • 基于 LSTM 的字符级文本生成 … 等等。 3.1.5.1 基于多层感知器 (MLP) 的 softmax 多分类: import keras from padding='same')(x) # 返回 x + y z = keras.layers.add([x, y]) 3.2.7.3 共享视觉模型 该模型在两个输入上重复使用同一个图像处理模块,以判断两个 MNIST 数字是否为相同的数字。 from keras.layers import Conv2D, MaxPooling2D, Input, Dense, Flatten from keras.models
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 03 Experiments, Reproducibility, and Projects - Introduction to Scientific Writing WS2021/22

    Writing – 03 Experiments & Reproducibility Matthias Boehm, Graz University of Technology, WS 2021/22 Dataset Selection  Synthetic Data  Generate data with specific data characteristics  Systematic evaluation Matrix Collection: https://sparse.tamu.edu/  Google dataset search: https://datasetsearch.research.google.com/  Common Datasets in ML: ImageNet, Mnist, CIFAR, KDD, Criteo  Common Datasets in DM: Census votes on correctness Reproducibility and RDM [Xiao Xiang Zhu et al: So2Sat LCZ42: A Benchmark Dataset for the Classification of Global Local Climate Zones. GRSM 2020] 23 706.015 Introduction to Scientific
    0 码力 | 31 页 | 1.38 MB | 1 年前
    3
  • pdf文档 人工智能发展史

    org/archive/icml2009/papers/218.pdf http://www.iro.umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf MNIST on GPU http://www.iro.umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf BOOM! 2012 ▪ 60
    0 码力 | 54 页 | 3.87 MB | 1 年前
    3
  • pdf文档 Reference guide for FCL units. Document version 3.2.2

    13TDataLink.BufferCount . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 11.20.14TDataLink.DataSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 11.20.15TDataLink.DataSource TDataSource.AutoEdit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 11.23.10TDataSource.DataSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 11.23.11TDataSource.Enabled . . TDefCollection.IndexOf . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 11.28.8 TDefCollection.Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 11.28.9 TDefCollection.Updated . .
    0 码力 | 953 页 | 2.21 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    Corpus1 where the model needs to predict if a pair of sentences are semantically equivalent. The dataset has only 5800 labeled examples of pairs, which would be incredibly small for this task if we were pre-training and fine-tuning stages. In the figure we demonstrate pre-training with a large unlabeled dataset of animal images. The pre-trained model is then fine-tuned for downstream tasks, for example object Figure 6-1: Pre-training and fine-tuning stages. With an example of a large unlabeled animal images dataset which is used for pre-training. The pre-trained model is then used for fine-tuning for downstream
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    produce better models faster. Let's say that we are optimizing the validation loss, , for a given dataset on a model represented by a function with a set of hyperparameters . Further, assume that is a the winners. Let's start by importing the relevant libraries and creating a random classification dataset with 20 samples, each one assigned to one of the five target classes. import random import tensorflow Source: Hyperband In chapter 3, we trained a model to classify flowers in the oxford_flowers102 dataset. In the next section, we will retrain the same model but with a twist! Project: Oxford Flower Classification
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
共 338 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 34
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterCompressionTechniqueskerastutorialNotesforinstallKerasonAnaconda3基于Python深度学习03ExperimentsReproducibilityandProjectsIntroductiontoScientificWritingWS202122人工智能人工智能发展发展史ReferenceguideFCLunitsDocumentversion3.2AdvancedTechnicalReviewAutomation
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩