积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(1189)Python(425)Java(320)综合其他(286)Spring(267)云计算&大数据(254)Weblate(212)数据库(194)C++(146)VirtualBox(113)

语言

全部英语(2006)

格式

全部PDF文档 PDF(1485)其他文档 其他(490)TXT文档 TXT(19)DOC文档 DOC(6)PPT文档 PPT(6)
 
本次搜索耗时 0.059 秒,为您找到相关结果约 1000 个.
  • 全部
  • 后端开发
  • Python
  • Java
  • 综合其他
  • Spring
  • 云计算&大数据
  • Weblate
  • 数据库
  • C++
  • VirtualBox
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • TXT文档 TXT
  • DOC文档 DOC
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Putting an Invisible Shield on Kubernetes Secrets

    Kailun Qin, Ant Group Putting an Invisible Shield on Kubernetes Secrets Agenda • K8s Secrets: Overview • TEE-based K8s Secrets Protection: Solution • Production Experience @ Ant Group • Demo • Summary Introducing mutual (remote / local) attestations between entities Production Experience @ Ant Group KMS Plugin • Workflow • Encryption • Decryption • Engineering decisions • apiserver is responsible
    0 码力 | 33 页 | 20.81 MB | 1 年前
    3
  • pdf文档 ClickHouse in Production

    https://badoo.com/ 26 / 97 ClickHouse in Production: Badoo HTTP Server Aggregation Services HDFS Storage MR Aggregation Old Events Pusher Events Storage Old Events Database PHP API Client Graphs Browser Mobile App 27 / 97 ClickHouse in Production: Badoo HTTP Server Aggregation Services HDFS Storage MR Aggregation Old Events Pusher Events Storage Old Events Database PHP API Client Graphs Browser Mobile App 28 / 97 ClickHouse in Production: Badoo HTTP Server Aggregation Services HDFS Storage MR Aggregation Old Events Pusher Events Storage Old Events Database PHP API Client Graphs
    0 码力 | 100 页 | 6.86 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.25

    Series, DataFrame, etc. automatically align the data for you in computations • Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both ag- gregating and Grouping By group by we are referring to a process involving one or more of the following steps: • Splitting the data into groups based on some criteria • Applying a function to each group independently Tablewise Function Application: pipe() 2. Row or Column-wise Function Application: apply() 3. Aggregation API: agg() and transform() 4. Applying Elementwise Functions: applymap() Tablewise function application
    0 码力 | 698 页 | 4.91 MB | 1 年前
    3
  • epub文档 peewee Documentation Release 0.9.7

    another way of expressing the same User.select({ User: ['*'], Tweet: [Count('id', 'count')] }).group_by('id').join(Tweet).order_by(('count', 'desc')) # do an atomic update TweetCount.update(count=F('count') SELECT "id", "creator", "name" FROM "blog" WHERE "id" = ? LIMIT 1 PARAMS: [1] To delete an arbitrary group of records, you can issue a DELETE query. The following will delete all Entry objects that are a year equivalent to the following: query = Blog.select({ Blog: ['*'], Entry: [Count('id')], }).group_by(Blog).join(Entry) The resulting query will return Blog objects with all their normal attributes
    0 码力 | 78 页 | 143.68 KB | 1 年前
    3
  • pdf文档 peewee Documentation Release 0.9.7

    # another way of expressing the same User.select({ User: [’*’], Tweet: [Count(’id’, ’count’)] }).group_by(’id’).join(Tweet).order_by((’count’, ’desc’)) # do an atomic update TweetCount.update(count=F(’count’) SELECT "id", "creator", "name" FROM "blog" WHERE "id" = ? LIMIT 1 PARAMS: [1] To delete an arbitrary group of records, you can issue a DELETE query. The following will delete all Entry objects that are a year This is equivalent to the following: query = Blog.select({ Blog: [’*’], Entry: [Count(’id’)], }).group_by(Blog).join(Entry) The resulting query will return Blog objects with all their normal attributes
    0 码力 | 53 页 | 347.03 KB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.0.0-alpha Document

    . . . . . . . . . . . . . . . . . . . . . . 295 7.9 In SQLSever and PostgreSQL, why does the aggregation column without alias throw ex‐ ception? . . . . . . . . . . . . . . . . . . . . . . . . . . . name after sharding, or misconducts caused by operations such as pagination, order by or aggregated group by are just the case in point. 3.1. Sharding 10 Apache ShardingSphere document, v5.0.0-beta Cross‐database extract the parsing context, which can include tables, options, ordering items, grouping items, aggregation functions, pagination information, query conditions and placeholders that may be revised. Query
    0 码力 | 311 页 | 2.09 MB | 1 年前
    3
  • epub文档 peewee Documentation Release 1.0.0

    another way of expressing the same User.select({ User: ['*'], Tweet: [Count('id', 'count')] }).group_by('id').join(Tweet).order_by(('count', 'desc')) # do an atomic update TweetCount.update(count=F('count') "id", "creator", "name" FROM "blog" WHERE "id" = ? LIMIT 1 PARAMS: [1] To delete an arbitrary group of records, you can issue a DELETE query. The following will delete all Entry objects that are a year equivalent to the following: query = Blog.select({ Blog: ['*'], Entry: [Count('id')], }).group_by(Blog).join(Entry) The resulting query will return Blog objects with all their normal attributes
    0 码力 | 101 页 | 163.20 KB | 1 年前
    3
  • pdf文档 peewee Documentation Release 1.0.0

    # another way of expressing the same User.select({ User: [’*’], Tweet: [Count(’id’, ’count’)] }).group_by(’id’).join(Tweet).order_by((’count’, ’desc’)) # do an atomic update TweetCount.update(count=F(’count’) SELECT "id", "creator", "name" FROM "blog" WHERE "id" = ? LIMIT 1 PARAMS: [1] To delete an arbitrary group of records, you can issue a DELETE query. The following will delete all Entry objects that are a year This is equivalent to the following: query = Blog.select({ Blog: [’*’], Entry: [Count(’id’)], }).group_by(Blog).join(Entry) The resulting query will return Blog objects with all their normal attributes
    0 码力 | 71 页 | 405.29 KB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.0.0 Document

    . . . . . . . . . . . . . . . . . . . . . . 257 Group‐by Merger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 Aggregation Merger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 7.7.20 20. [Other] In SQLSever and PostgreSQL, why does the aggregation column with‐ out alias throw exception? . . . . . . . . . . . . . . . . . . . . . . . . . . . t_order CHECK TABLE t_order SET RESOURCE GROUP group_name DROP RESOURCE GROUP group_name CREATE RESOURCE GROUP group_name TYPE = SYSTEM ALTER RESOURCE GROUP rg1 VCPU = 0‐63 4.1. DB Compatibility 19
    0 码力 | 403 页 | 3.15 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.1.1 Document

    . . . . . . . . . . . . . . . . . . . . . . 267 Group‐by Merger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 Aggregation Merger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 7.8.23 [Other] In SQLSever and PostgreSQL, why does the aggregation column without alias throw exception? . . . . . . . . . . . . . . . . . . . . . . . . . . . . t_order CHECK TABLE t_order SET RESOURCE GROUP group_name DROP RESOURCE GROUP group_name CREATE RESOURCE GROUP group_name TYPE = SYSTEM ALTER RESOURCE GROUP rg1 VCPU = 0‐63 openGauss The unsupported
    0 码力 | 458 页 | 3.43 MB | 1 年前
    3
共 1000 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
PuttinganInvisibleShieldonKubernetesSecretsKailunQinAntGroupClickHouseinProductionpandaspowerfulPythondataanalysistoolkit0.25peeweeDocumentationRelease0.9ApacheShardingSphere5.0alphaDocument1.05.1
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩