积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(141)云计算&大数据(85)Julia(76)VirtualBox(45)C++(30)nim(29)Pandas(23)综合其他(15)数据库(11)Greenplum(11)

语言

全部英语(258)

格式

全部PDF文档 PDF(247)其他文档 其他(7)PPT文档 PPT(4)
 
本次搜索耗时 0.136 秒,为您找到相关结果约 258 个.
  • 全部
  • 后端开发
  • 云计算&大数据
  • Julia
  • VirtualBox
  • C++
  • nim
  • Pandas
  • 综合其他
  • 数据库
  • Greenplum
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Go on GPU

    Changkun Ou. 2023. Go on GPU. GopherChina 2023. Session "Foundational Toolchains" Go on GPU Changkun Ou changkun.de/s/gogpu GopherChina 2023 Session “Foundational Toolchains” 2023 June 10 1 Changkun Ou. 2023. Go on GPU. GopherChina 2023. Session "Foundational Toolchains" Agenda ● Basic knowledge for interacting with GPUs ● Accelerate Go programs using GPUs ● Challenges in Go when using outlooks 2 Changkun Ou. 2023. Go on GPU. GopherChina 2023. Session "Foundational Toolchains" Agenda ● Basic knowledge for interacting with GPUs ○ Motivation ○ GPU Driver and Standards ○ Render and
    0 码力 | 57 页 | 4.62 MB | 1 年前
    3
  • pdf文档 Bridging the Gap: Writing Portable Programs for CPU and GPU

    1/66Bridging the Gap: Writing Portable Programs for CPU and GPU using CUDA Thomas Mejstrik Sebastian Woblistin 2/66Content 1 Motivation Audience etc.. Cuda crash course Quiz time 2 Patterns Oldschool Motivation Patterns The dark path Cuda proposal Thank you Why write programs for CPU and GPU Difference CPU/GPU Algorithms are designed differently Latency/Throughput Memory bandwidth Number of cores Motivation Patterns The dark path Cuda proposal Thank you Why write programs for CPU and GPU Difference CPU/GPU Why it makes sense? Library/Framework developers Embarrassingly parallel algorithms User
    0 码力 | 124 页 | 4.10 MB | 6 月前
    3
  • pdf文档 PyTorch Release Notes

    Deep Learning SDK accelerates widely-used deep learning frameworks such as PyTorch. PyTorch is a GPU-accelerated tensor computational framework with a Python front end. Functionality can be easily extended standard defined neural network layers, deep learning optimizers, data loading utilities, and multi-gpu, and multi-node support. Functions are executed immediately instead of enqueued in a static graph, see Preparing to use NVIDIA Containers Getting Started Guide. ‣ For non-DGX users, see NVIDIA ® GPU Cloud ™ (NGC) container registry installation documentation based on your platform. ‣ Ensure that
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 POCOAS in C++: A Portable Abstraction for Distributed Data Structures

    CPU vFast GPU vvFast PCI Bus (or other fabric)GPUs as a First-Class Computing Resource CPU GPU PCI Bus (or other fabric) NIC - Historically, network comm. was CPU-centric 1) Direct GPU access to Infiniband allows GPU-to-GPU network transfers 2) Fast in-node fabrics like NVLink, Infinity Fabric allow very fast intra-node transfers DataGPUs as a First-Class Computing Resource CPU GPU PCI Bus (or fabric) NIC Data - Historically, network comm. was CPU-centric 1) Direct GPU access to Infiniband allows GPU-to-GPU network transfers 2) Fast in-node fabrics like NVLink, Infinity Fabric allow
    0 码力 | 128 页 | 2.03 MB | 6 月前
    3
  • pdf文档 Taro: Task graph-based Asynchronous Programming Using C++ Coroutine

    B" : GPU operation 9Existing TGPSs on Heterogenous Computing - Challenge A C D B! B" 5 task_b = sched.emplace([](&){ 6 // CPU code; // GPU code; 7 }); // CPU thread blocks until GPU finishes B" : GPU operation 10Existing TGPSs on Heterogenous Computing - Challenge A C D B! B" 5 task_b = sched.emplace([](&){ 6 // CPU code; // GPU code; 7 }); // CPU thread blocks until GPU finishes operation B" : GPU operation Atomic execution per task 11Existing TGPSs on Heterogenous Computing - Challenge CPU A B! C Idle GPU D B" Runtime A C D B! B" Assume one CPU and one GPU B! : CPU operation
    0 码力 | 84 页 | 8.82 MB | 6 月前
    3
  • pdf文档 Heterogeneous Modern C++ with SYCL 2020

    http://wongmichael.com/about ● C++11 book in Chinese: https://www.amazon.cn/dp/B00ETOV2OQ We build GPU compilers for some of the most powerful supercomputers in the world 34 Nevin “:-)” Liber nliber@anl Attribution 4.0 International License SYCL Single Source C++ Parallel Programming GPU FPGA DSP Custom Hardware GPU CPU CPU CPU Standard C++ Application Code C++ Libraries ML Frameworks give better performance on complex apps and libs than hand-coding AI/Tensor HW GPU FPGA DSP Custom Hardware GPU CPU CPU CPU AI/Tensor HW Other BackendsSYCL 2020 is here! Open Standard for
    0 码力 | 114 页 | 7.94 MB | 6 月前
    3
  • ppt文档 Bringing Existing Code to CUDA Using constexpr and std::pmr

    cudaFree(x); cudaFree(y); } An Even Easier Introduction to CUDA 5 |__global__ void add_gpu(int n, float* x, float* y) { for (int i = 0; i < n; i++) y[i] = x[i] + y[i]; } TEST_CASE("cppcon-1" TEST_CASE("cppcon-1", "[CUDA]") { // … } An Even Easier Introduction to CUDA 6 |__global__ void add_gpu(int n, float* x, float* y) { for (int i = 0; i < n; i++) y[i] = x[i] + y[i]; } TEST_CASE("cppcon-1" 20; float* x; float* y; // … add_gpu<<<1, 1>>>(N, x, y); // … } An Even Easier Introduction to CUDA 7 |__global__ void add_gpu(int n, float* x, float* y) { for (int i = 0;
    0 码力 | 51 页 | 3.68 MB | 6 月前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    . . . . . . . . . 6 2.4 Keras 支持多个后端引擎,并且不会将你锁定到一个生态系统中 . . . . . . . . . . 6 2.5 Keras 拥有强大的多 GPU 和分布式训练支持 . . . . . . . . . . . . . . . . . . . . . . 6 2.6 Keras 的发展得到深度学习生态系统中的关键公司的支持 . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3.3 如何在 GPU 上运行 Keras? . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3.4 如何在多 GPU 上运行 Keras 模型? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 20.9 multi_gpu_model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 21 贡献 242 21
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 Distributed Ranges: A Model for Building Distributed Data Structures, Algorithms, and Views

    involve experimental prototypes and early research.Problem: writing parallel programs is hard - Multi-GPU, multi-CPU systems require partitioning data - Users must manually split up data amongst GPUs / execution necessary. CPU NIC GPU GPU GPU GPU Xe LinkMulti-GPU Systems - NUMA regions: - 4+ GPUs - 2+ CPUs CPU NIC GPU GPU GPU GPU Xe LinkMulti-GPU Systems - NUMA regions: - 4+ GPUs more memory domains - Software needed to reduce complexity CPU NIC GPU Tile 1 Tile 0 GPU Tile 1 Tile 0 GPU Tile 1 Tile 0 GPU Tile 1 Tile 0 Xe LinkProject Goals - Offer high-level, standard C++
    0 码力 | 127 页 | 2.06 MB | 6 月前
    3
  • pdf文档 Blender v2.92 Manual

    to the GE, and over 400 bug fixes. 2.72 – October 2014: Cycles gets volume and SSS support on the GPU, pie menus are added and tooltips greatly improved, the Intersection modeling tool is added, new Sun Automatic Automatically use GLSL which runs on the GPU for performance but falls back to the CPU for large images which might be slow when loaded with the GPU. 2D Texture Uses CPU for display transform and images. Cycles can use either the CPU or certain GPUs to render images, for more information see the GPU Rendering page. None When set to None or when the only option is None: the CPU will be used as the
    0 码力 | 3868 页 | 198.46 MB | 1 年前
    3
共 258 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 26
前往
页
相关搜索词
GoonGPUBridgingtheGapWritingPortableProgramsforCPUandPyTorchReleaseNotesPOCOASinC++AbstractionDistributedDataStructuresTaroTaskgraphbasedAsynchronousProgrammingUsingCoroutineHeterogeneousModernwithSYCL2020BringingExistingCodetoCUDAconstexprstdpmrKeras基于Python深度学习RangesModelBuildingAlgorithmsViewsBlenderv292Manual
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩