积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(391)综合其他(235)Weblate(171)云计算&大数据(141)Python(133)数据库(89)VirtualBox(85)Julia(76)C++(58)PostgreSQL(40)

语言

全部英语(896)

格式

全部PDF文档 PDF(719)其他文档 其他(177)
 
本次搜索耗时 0.658 秒,为您找到相关结果约 896 个.
  • 全部
  • 后端开发
  • 综合其他
  • Weblate
  • 云计算&大数据
  • Python
  • 数据库
  • VirtualBox
  • Julia
  • C++
  • PostgreSQL
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    length-controlled win rate on AlpacaEval 2.0 (Dubois et al., 2024), 8.97 overall score on MT-Bench (Zheng et al., 2023), and 7.91 overall score on AlignBench (Liu et al., 2023). The English open-ended conversation Testing DeepSeek-V2 Base 128K Context via "Needle In A HayStack" 1 2 3 4 5 6 7 8 9 10 Score Figure 4 | Evaluation results on the “Needle In A Haystack” (NIAH) tests. DeepSeek-V2 performs well 0.606 BBH (EM) 3-shot 68.7 59.9 78.9 81.0 78.9 MMLU (Acc.) 5-shot 71.3 77.2 77.6 78.9 78.5 DROP (F1) 3-shot 69.7 71.5 80.4 82.5 80.1 ARC-Easy (Acc.) 25-shot 95.3 97.1 97.3 97.9 97.6 ARC-Challenge (Acc
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 openEuler OS Technical Whitepaper Innovation Projects (June, 2023)

    allocation Stride prefetch Scenario-specific performance Security, reliability, and O&M F1 F1 P1=ptr1 P1=ptr2 F2 F1 F1 F1 P1_ pc =idx1 P1_ pc =idx1 P1_ cmp F2 F2 F2 F2 PAD PAD struct st struct st_pc struct bulletin is issued. A security bulletin includes technical details, CVE identifier, CVSS security score, severity level of the vulnerability, and the affected and fixed versions. You can subscribe to
    0 码力 | 116 页 | 3.16 MB | 1 年前
    3
  • pdf文档 The Hitchhiker’s Guide to Logical Verification

    server’s score being called first: No point – “Love” First point – “15” Second point – “30” Third point – “40” Fourth point – “Game” except that if each player/team has won three points, the score is “Deuce “Deuce.” After “Deuce,” the score is “Advantage” for the player/team who wins the next point. If that same player/team also wins the next point, that player/team wins the “Game”; if the opposing player/team the score is again “Deuce.” A player/team needs to win two consecutive points immediately after “Deuce” to win the “Game.” We first define an inductive type to represent scores: inductive score : Type
    0 码力 | 215 页 | 1.95 MB | 1 年前
    3
  • pdf文档 PostgreSQL 9.5.25 Documentation

    yields the total number of input rows; count(f1) yields the number of input rows in which f1 is non-null, since count ignores nulls; and count(distinct f1) yields the number of distinct non-null values sub-ARRAY construct. For example: CREATE TABLE arr(f1 int[], f2 int[]); INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,8]]); SELECT ARRAY[f1, f2, ’{{9,10},{11,12}}’::int[]] FROM arr; array is used at the top level of a SELECT list (see Section 8.16.5). For example, if table t has columns f1 and f2, these are the same: SELECT ROW(t.*, 42) FROM t; SELECT ROW(t.f1, t.f2, 42) FROM t; Note:
    0 码力 | 2558 页 | 6.27 MB | 1 年前
    3
  • pdf文档 PostgreSQL 9.5 Documentation

    yields the total number of input rows; count(f1) yields the number of input rows in which f1 is non-null, since count ignores nulls; and count(distinct f1) yields the number of distinct non-null values construct. For example: CREATE TABLE arr(f1 int[], f2 int[]); 47 Chapter 4. SQL Syntax INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,8]]); SELECT ARRAY[f1, f2, ’{{9,10},{11,12}}’::int[]] FROM is used at the top level of a SELECT list (see Section 8.16.5). For example, if table t has columns f1 and f2, these are the same: SELECT ROW(t.*, 42) FROM t; SELECT ROW(t.f1, t.f2, 42) FROM t; Note:
    0 码力 | 2714 页 | 6.33 MB | 1 年前
    3
  • pdf文档 PostgreSQL 13.13 Documentation

    yields the total number of input rows; count(f1) yields the number of input rows in which f1 is non-null, since count ignores nulls; and count(distinct f1) yields the number of distinct non-null values sub-ARRAY construct. For example: CREATE TABLE arr(f1 int[], f2 int[]); INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,8]]); SELECT ARRAY[f1, f2, '{{9,10},{11,12}}'::int[]] FROM arr; is used at the top level of a SELECT list (see Section 8.16.5). For example, if table t has columns f1 and f2, these are the same: SELECT ROW(t.*, 42) FROM t; SELECT ROW(t.f1, t.f2, 42) FROM t; Note
    0 码力 | 2782 页 | 13.00 MB | 1 年前
    3
  • pdf文档 PostgreSQL 14.10 Documentation

    yields the total number of input rows; count(f1) yields the number of input rows in which f1 is non-null, since count ignores nulls; and count(distinct f1) yields the number of distinct non-null values sub-ARRAY construct. For example: CREATE TABLE arr(f1 int[], f2 int[]); INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,8]]); SELECT ARRAY[f1, f2, '{{9,10},{11,12}}'::int[]] FROM arr; is used at the top level of a SELECT list (see Section 8.16.5). For example, if table t has columns f1 and f2, these are the same: SELECT ROW(t.*, 42) FROM t; SELECT ROW(t.f1, t.f2, 42) FROM t; Note
    0 码力 | 2871 页 | 13.38 MB | 1 年前
    3
  • pdf文档 PostgreSQL 10.23 Documentation

    yields the total number of input rows; count(f1) yields the number of input rows in which f1 is non-null, since count ignores nulls; and count(distinct f1) yields the number of distinct non-null values construct. For example: CREATE TABLE arr(f1 int[], f2 int[]); 47 SQL Syntax INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,8]]); SELECT ARRAY[f1, f2, '{{9,10},{11,12}}'::int[]] FROM arr; is used at the top level of a SELECT list (see Section 8.16.5). For example, if table t has columns f1 and f2, these are the same: SELECT ROW(t.*, 42) FROM t; SELECT ROW(t.f1, t.f2, 42) FROM t; 48 SQL
    0 码力 | 2590 页 | 12.03 MB | 1 年前
    3
  • pdf文档 PostgreSQL 16.1 Documentation

    yields the total number of input rows; count(f1) yields the number of input rows in which f1 is non-null, since count ignores nulls; and count(distinct f1) yields the number of distinct non-null values sub-ARRAY construct. For example: CREATE TABLE arr(f1 int[], f2 int[]); INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,8]]); SELECT ARRAY[f1, f2, '{{9,10},{11,12}}'::int[]] FROM arr; is used at the top level of a SELECT list (see Section 8.16.5). For example, if table t has columns f1 and f2, these are the same: SELECT ROW(t.*, 42) FROM t; SELECT ROW(t.f1, t.f2, 42) FROM t; Note
    0 码力 | 2974 页 | 14.22 MB | 1 年前
    3
  • pdf文档 PostgreSQL 15.5 Documentation

    yields the total number of input rows; count(f1) yields the number of input rows in which f1 is non-null, since count ignores nulls; and count(distinct f1) yields the number of distinct non-null values sub-ARRAY construct. For example: CREATE TABLE arr(f1 int[], f2 int[]); INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,8]]); SELECT ARRAY[f1, f2, '{{9,10},{11,12}}'::int[]] FROM arr; is used at the top level of a SELECT list (see Section 8.16.5). For example, if table t has columns f1 and f2, these are the same: SELECT ROW(t.*, 42) FROM t; SELECT ROW(t.f1, t.f2, 42) FROM t; Note
    0 码力 | 2910 页 | 13.60 MB | 1 年前
    3
共 896 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 90
前往
页
相关搜索词
DeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelopenEulerOSTechnicalWhitepaperInnovationProjectsJune2023TheHitchhikerGuidetoLogicalVerificationPostgreSQL9.525Documentation13.1314.1010.2316.115.5
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩