积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(24)Python(21)综合其他(17)云计算&大数据(17)Blender(10)机器学习(9)VirtualBox(8)系统运维(6)httpd(6)GIMP(5)

语言

全部英语(64)

格式

全部PDF文档 PDF(63)其他文档 其他(1)
 
本次搜索耗时 0.037 秒,为您找到相关结果约 64 个.
  • 全部
  • 后端开发
  • Python
  • 综合其他
  • 云计算&大数据
  • Blender
  • 机器学习
  • VirtualBox
  • 系统运维
  • httpd
  • GIMP
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    their giant counterparts. In the first chapter, we briefly introduced architectures like depthwise separable convolution, attention mechanism and the hashing trick. In this chapter, we will deepdive into their corresponding animal in the embedding table. ● Train the model: As we saw earlier the points are linearly separable. We can train a model with a single fully connected layer followed by a softmax activation, since provided a breakthrough for efficiently learning from sequential data, depthwise separable convolution extended the reach of convolution models to mobile and other devices with limited compute and memory resources
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    the training process: performance and convergence. Hyperparameters like number of filters in a convolution network or 1 Note that this search space is just choosing if we are applying the techniques. The manipulate the structure of a network. The number of dense units, number of convolution channels or the size of convolution kernels can sometimes be 4 Jaderberg, Max, et al. "Population based training a simple convolution network. Each timestep outputs a convolution layer parameter such as number of filters, filter height, filter width and other parameters required to describe a convolution layer. It
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    depth_multiplier=1, activation=None, use_bias=True, depthwise_initializer='glorot_uniform', pointwise_initializer='glorot_uniform', bias_initializer='zeros', depthwise_regularizer=None, pointwise_regularizer=None one, bias_regularizer=None, activity_regularizer=None, depthwise_constraint=None, pointwise_constraint=None, bias_constraint=None) 深度方向的可分离 2D 卷积。 可分离的卷积的操作包括,首先执行深度方向的空间卷积(分别作用于每个输入通道),紧 接一个将所得输 布尔值,该层是否使用偏置向量。 • depthwise_initializer: 运用到深度方向的核矩阵的初始化器 (详见 initializers)。 • pointwise_initializer: 运用到逐点核矩阵的初始化器 (详见 initializers)。 • bias_initializer: 偏置向量的初始化器 (详见 initializers)。 • depthwise_regularizer:
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    accuracy. This model script is available on GitHub and NGC. ‣ Mask R-CNN model: Mask R-CNN is a convolution-based neural network that is used for object instance segmentation. PyTorch Release 23.07 PyTorch accuracy. This model script is available on GitHub and NGC. ‣ Mask R-CNN model: Mask R-CNN is a convolution-based neural network that is used for object instance segmentation. The paper describing the model accuracy. This model script is available on GitHub and NGC. ‣ Mask R-CNN model: Mask R-CNN is a convolution-based neural network that is used for object instance segmentation. The paper describing the model
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 Data Is All You Need for Fusion

    fern::Interval (y, out.y_start, out.y_start + out.y_len, l fern::Compute( fern::Producer(Convolution Input Filters Convolution 65 }) )) template void gemm(Matrix A,Matrix B,Matrix fern::Interval void conv(image input, image filter, int StrideArg, image out);Convolution Input Filters Convolution 66 }) )) template void gemm(Matrix A,Matrix B,Matrix fern::Interval void conv(image input, image filter, int StrideArg, image out);Convolution Input Filters Convolution 67 }) )) template void gemm(Matrix A,Matrix B,Matrix fern::Interval
    0 码力 | 151 页 | 9.90 MB | 6 月前
    3
  • pdf文档 keras tutorial

    ........................................................................................ 45 Convolution Layers ....................................................................................... ............................................................................ 71 12. Keras ― Convolution Neural Network ............................................................................... Keras neural networks are written in Python which makes things simpler.  Keras supports both convolution and recurrent networks. 1. Keras ― Introduction Keras 2  Deep learning
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 Lecture Notes on Support Vector Machine

    given a set of m training data {(x(i), y(i))}i=1,··· ,m, we first assume that they are linearly separable. Specifically, there exists a hyperplane (parameterized by ω and b) such that ωT x(i) + b ≥ 0 for features (“derived” from the old representation). As shown in Fig. 4 (b), data become linearly separable in the new higher-dimensional feature space (a) (b) Figure 4: Feature mapping for 1-dimensional apply the mapping x = {x1, x2} → z = {x2 1, √ 2x1x2, x2 2}, such that the data become linearly separable in the resulting 3-dimensional feature space. We now consider a general quadratic feature mapping
    0 码力 | 18 页 | 509.37 KB | 1 年前
    3
  • pdf文档 Adventures in SIMD Thinking (Part 2 of 2)

    problems • Intra-register sorting • Fast linear median-of-seven filter • Fast small-kernel convolution • Faster (?) UTF-8 to UTF-32 conversion (with AVX2) • No heavy code, but lots of pictures • Small-Kernel Convolution 3 CppCon 2020 - Adventures in SIMD ThinkingCopyright © 2020 Bob Steagall K E W B C O M P U T I N G Convolution • f is a signal • g is a kernel • Output f*g is the convolution • Every CppCon 2020 - Adventures in SIMD Thinking 4Copyright © 2020 Bob Steagall K E W B C O M P U T I N G Convolution CppCon 2020 - Adventures in SIMD Thinking 5 S = s0 s1 s2 s3 s4 s5 s6
    0 码力 | 135 页 | 551.08 KB | 6 月前
    3
  • pdf文档 Lecture 6: Support Vector Machine

    example now has two features (“derived” from the old representa- tion) Data now becomes linearly separable in the new representation Feng Li (SDU) SVM December 28, 2021 42 / 82 Feature Mapping (Contd.) example now has three features (“derived” from the old represen- tation) Data now becomes linearly separable in the new representation Feng Li (SDU) SVM December 28, 2021 44 / 82 Feature Mapping (Contd.) Soft-Margin SVM (Contd.) Recall that, for the separable case (training loss = 0), the constraints were y(i)(ωTx(i) + b) ≥ 1 for ∀i For the non-separable case, we relax the above constraints as: y(i)(ωTx(i)
    0 码力 | 82 页 | 773.97 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    matrix of size [5, 6]. This is because we have simply removed the first neuron. Now, consider a convolution layer with 3x3 sized filters and 3 input channels. At 1-D granularity, a vector of weights is pruned filters project consisted of thirteen convolution blocks and five deconvolution blocks. Our model achieved an accuracy of 85.11%. Here, we will prune the convolution blocks from block two (zero indexed) model for pruning. The prunable_blocks variable is the list of names of prunable convolution blocks. We prune all convolution blocks from second (zero indexed) onwards. The model variable refers to the pet
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
共 64 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterArchitecturesAutomationKeras基于Python深度学习PyTorchReleaseNotesDataIsAllYouNeedforFusionkerastutorialLectureonSupportVectorMachineAdventuresinSIMDThinkingPartofAdvancedCompressionTechniques
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩