Solving Nim by the Use of Machine LearninggetSum () 12 self.board.sort(reverse = True) 13 self. listOfStates = [] 14 self. listOfStates .append(self.board [:]) 15 self.T = [] 16 self.Q = [] Listing 3: Initialization of the programs using 23 def setup(self , type): 24 timeStart = time.time () 25 for i in range(self.sum): 26 self.T.append ([0] * self.sum) 27 for x in range(len(self. listOfStates [i])): 28 for y in range (1, self. listOfStates [i+tmpValue] = tmpList [:] 36 self.Q.append ([]) 37 for j in range(self.sum -1): 38 if(self.T[i][j] == 1): 39 self.Q[i]. append(random.random ()) 40 else: 41 self.Q[i]. append(-np.inf) 42 if (self.T[i][ self0 码力 | 109 页 | 6.58 MB | 1 年前3
MYBATIS Quick GuideStringBuilder(); sb.append("Id = ").append(id).append(" - "); sb.append("Name = ").append(name).append(" - "); sb.append("Branch = ").append(branch).append(" - "); sb.append("Percentage = ") ").append(percentage).append(" - "); sb.append("Phone = ").append(phone).append(" - "); sb.append("Email = ").append(email); return sb.toString(); } } Student.xml File To define StringBuilder(); sb.append("Id = ").append(id).append(" - "); sb.append("Name = ").append(name).append(" - "); sb.append("Branch = ").append(branch).append(" - "); sb.append("Percentage = ")0 码力 | 34 页 | 301.72 KB | 1 年前3
So You Think You Can Hashseparately accessible: 1. Init / construction of the hasher 2. Write overloads for primitive/std types (append to the hash) 3. Finalize function -> size_t2024 Victor Ciura | @ciura_victor - Unleashing 🦀 separately accessible: 1. Init / construction of the hasher 2. Write overloads for primitive/std types (append to the hash) 3. Finalize function -> size_t This technique ensures that: we no longer need to the need to touch the data model and how each field recursively contributes to the overall digest (append/write). 🔶 The same technique can be used with almost every existing hashing algorithm, eg.0 码力 | 119 页 | 6.54 MB | 6 月前3
pandas: powerful Python data analysis toolkit - 0.13.1’A’] In [17]: dfi Out[17]: A B C 0 0 1 0 1 2 3 2 2 4 5 4 [3 rows x 3 columns] This is like an append operation. In [18]: dfi.loc[3] = 5 In [19]: dfi Out[19]: A B C 0 0 1 0 1 2 3 2 2 4 5 4 3 5 fixed(f) or table(t) the same defaults as prior < 0.13.0 remain, e.g. put implies fixed format and append implies table format. This default format can be set as an option by setting io.hdf.default_format pandas: powerful Python data analysis toolkit, Release 0.13.1 In [47]: df.to_hdf(path,’df_table2’,append=True) In [48]: df.to_hdf(path,’df_fixed’) In [49]: with get_store(path) as store: ....: print(store)0 码力 | 1219 页 | 4.81 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.14.0’A’] In [17]: dfi Out[17]: A B C 0 0 1 0 1 2 3 2 2 4 5 4 [3 rows x 3 columns] This is like an append operation. In [18]: dfi.loc[3] = 5 In [19]: dfi Out[19]: A B C 0 0 1 0 1.3. v0.13.0 (January fixed(f) or table(t) the same defaults as prior < 0.13.0 remain, e.g. put implies fixed format and append implies table format. This default format can be set as an option by setting io.hdf.default_format DataFrame(randn(10,2)) In [46]: df.to_hdf(path,’df_table’,format=’table’) In [47]: df.to_hdf(path,’df_table2’,append=True) In [48]: df.to_hdf(path,’df_fixed’) In [49]: with get_store(path) as store: ....: print(store)0 码力 | 1349 页 | 7.67 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.12with a AttributeConflictWarning if you are attempting to append an index with a different frequency than the existing, or attempting to append an index with a different name than the existing – support unique method, can be replicated by select_column(key,column).unique() – min_itemsize parameter to append will now automatically create data_columns for passed keys 1.2.8 Enhancements • Improved performance read_csv/to_csv In [51]: df = DataFrame(dict(A=range(5), B=range(5))) In [52]: df.to_hdf(’store.h5’,’table’,append=True) In [53]: read_hdf(’store.h5’, ’table’, where = [’index>2’]) A B 3 3 3 4 4 4 – provide0 码力 | 657 页 | 3.58 MB | 1 年前3
TiDB 2.1.7how- ever, can never observe y alone, since the same process inserted x prior to y. 2.6 Monotonic & Append Some of Jepsen’s checkers (e.g. linearizability) allow the verification of arbitrary histories. However registers, the txn-cycle test finds write-read dependency cycles over read-write registers, and the append test uses appends of unique elements to lists. We include realtime dependencies (e.g. T1 com- pletes 1], and append(36, 5) to denote appending 5 to the current value of key 36. T1: r(34, [2 1]), append(36, 5), append(34, 4) T2: append(34, 5) T3: r(34, [2 1 5 4]) Because T1 did not see T2’s append of 5 to0 码力 | 9 页 | 141.29 KB | 6 月前3
pandas: powerful Python data analysis toolkit - 0.15the left argument (GH7737). • Previously an enlargement with a mixed-dtype frame would act unlike .append which will preserve dtypes (related GH2578, GH8176): In [108]: df = DataFrame([[True, 1],[False CustomBusinessDay.apply raiases NameError when np.datetime64 object is passed (GH7196) • Bug in MultiIndex.append, concat and pivot_table don’t preserve timezone (GH6606) • Bug in .loc with a list of indexers on ’A’] In [17]: dfi Out[17]: A B C 0 0 1 0 1 2 3 2 2 4 5 4 [3 rows x 3 columns] This is like an append operation. In [18]: dfi.loc[3] = 5 In [19]: dfi Out[19]: A B C 0 0 1 0 1.7. v0.13.0 (January0 码力 | 1579 页 | 9.15 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.15.1the left argument (GH7737). • Previously an enlargement with a mixed-dtype frame would act unlike .append which will preserve dtypes (related GH2578, GH8176): In [108]: df = DataFrame([[True, 1],[False CustomBusinessDay.apply raiases NameError when np.datetime64 object is passed (GH7196) • Bug in MultiIndex.append, concat and pivot_table don’t preserve timezone (GH6606) • Bug in .loc with a list of indexers on ’A’] In [17]: dfi Out[17]: A B C 0 0 1 0 1 2 3 2 2 4 5 4 [3 rows x 3 columns] This is like an append operation. In [18]: dfi.loc[3] = 5 In [19]: dfi Out[19]: A B C 0 0 1 0 1.6. v0.13.0 (January0 码力 | 1557 页 | 9.10 MB | 1 年前3
Go 101 (Golang 101) v1.21.0The next section will explain how to append elements to a base slice and yield a new slice by using the built-in append function. The result slice of an append function call may share starting elements the base slice and how many elements are appended. When the slice is used as the base slice in an append function call, if the number of appended elements is larger than the number of the redundant element a0 := [...]int{7, 8, 9} a1 := a0 a1[0] = 2 fmt.Println(a0, a1) // [7 8 9] [2 8 9] } Append and Delete Container Elements The syntax of appending a key-element pair (an entry) to a map is0 码力 | 610 页 | 945.17 KB | 1 年前3
共 1000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 100













