积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(1359)Python(441)综合其他(401)Java(371)Spring(314)Weblate(302)云计算&大数据(287)数据库(198)C++(126)VirtualBox(112)

语言

全部英语(1857)中文(简体)(368)中文(繁体)(22)日语(18)法语(16)德语(15)俄语(15)韩语(13)西班牙语(12)英语(7)

格式

全部PDF文档 PDF(1737)其他文档 其他(540)TXT文档 TXT(67)PPT文档 PPT(5)DOC文档 DOC(2)
 
本次搜索耗时 0.014 秒,为您找到相关结果约 1000 个.
  • 全部
  • 后端开发
  • Python
  • 综合其他
  • Java
  • Spring
  • Weblate
  • 云计算&大数据
  • 数据库
  • C++
  • VirtualBox
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 日语
  • 法语
  • 德语
  • 俄语
  • 韩语
  • 西班牙语
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • TXT文档 TXT
  • PPT文档 PPT
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Boston University 2020 CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 1/23: Stream Processing Fundamentals Vasiliki Kalavri | Boston University University 2020 What is a stream? • In traditional data processing applications, we know the entire dataset in advance, e.g. tables stored in a database. A data stream is a data set that is produced incrementally incrementally over time, rather than being available in full before its processing begins. • Data streams are high-volume, real-time data that might be unbounded • we cannot store the entire stream
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Skew mitigation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    ??? Vasiliki Kalavri | Boston University 2020 CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 4/16: Skew mitigation ??? Vasiliki Kalavri | Uddin Nasir et. al. The power of both choices: Practical load balancing for distributed stream processing engines. ICDE 2015. • Mitzenmacher, Michael. The power of two choices in randomized load balancing
    0 码力 | 31 页 | 1.47 MB | 1 年前
    3
  • pdf文档 State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 2/25: State Management Vasiliki Kalavri | Boston operator. Keyed state can only be used by functions that are applied on a KeyedStream: • When the processing method of a function with keyed input is called, Flink’s runtime automatically puts all keyed fare, Collector> out) throws Exception {
 // similar logic for processing fare events
 }
 }
 } Java example (cont.) 21 Vasiliki Kalavri | Boston University 2020
    0 码力 | 24 页 | 914.13 KB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Boston University 2020 CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 4/14: Stream processing optimizations ??? Vasiliki Kalavri | Boston University serialization cost • if operators are separate, throughput is bounded by either communication or processing cost • if fused, throughput is determined by operator cost only Operator fusion A B A B is statically configured with a certain number of processing slots that defines the maximum number of concurrent tasks it can execute. • A processing slot can execute one slice of an application, i.e
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 2/11: Windows and Triggers Vasiliki Kalavri | Boston windowing use cases: • They assign an element based on its event-time timestamp or the current processing time to windows. • Time windows have a start and an end timestamp. • All built-in window assigners assigners provide a default trigger that triggers the evaluation of a window once the (processing or event) time passes the end of the window. • A window is created when the first element is assigned
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 1/21: Introduction Vasiliki Kalavri | Boston University course, you will hopefully: • know when to use stream processing vs other technology • be able to comprehensively compare features and processing guarantees of streaming systems • be proficient in using end-to-end, scalable, and reliable streaming applications • have a solid understanding of how stream processing systems work and what factors affect their performance • be aware of the challenges and trade-offs
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
  • pdf文档 Notions of time and progress - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Boston University 2020 Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu CS 591 K1: Data Stream Processing and Analytics Spring 2020 2/06: Notions of time and progress Vasiliki Kalavri | Boston University minute? 4 Vasiliki Kalavri | Boston University 2020 • Processing time • the time of the local clock where an event is being processed • a processing-time window wouldn’t account for game activity while while the train is in the tunnel • results depend on the processing speed and aren’t deterministic • Event time • the time when an event actually happened • an event-time window would give you the
    0 码力 | 22 页 | 2.22 MB | 1 年前
    3
  • pdf文档 Cardinality and frequency estimation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    ??? Vasiliki Kalavri | Boston University 2020 CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 4/23: Cardinality and frequency estimation
    0 码力 | 69 页 | 630.01 KB | 1 年前
    3
  • pdf文档 Graph streaming algorithms - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    ??? Vasiliki Kalavri | Boston University 2020 CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 4/28: Graph Streaming ??? Vasiliki Kalavri | Vertex streams (not today) ??? Vasiliki Kalavri | Boston University 2020 Batch Graph Processing 9 Batch graph processing systems, such as Apache Graph, GraphX, Pregel, operate offline. They are built from scratch for every new edge? • Can we use graph synopses and summaries and compute graph analytics in one-pass? ??? Vasiliki Kalavri | Boston University 2020 Connectivity & Bipartite property
    0 码力 | 72 页 | 7.77 MB | 1 年前
    3
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    ??? Vasiliki Kalavri | Boston University 2020 CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 4/21: Sampling and filtering streams ??? Vasiliki Roginsky, Miguel Jimeno. A new analysis of the false positive rate of a Bloom filter. Information Processing Letters 110 (2010). Further reading
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
共 1000 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
StreamprocessingfundamentalsCS591K1DataProcessingandAnalyticsSpring2020SkewmitigationStatemanagementStreamingoptimizationsWindowstriggersCourseintroductionNotionsoftimeprogressCardinalityfrequencyestimationGraphstreamingalgorithmsFilteringsamplingstreams
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩