积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(5)前端开发(2)综合其他(2)JavaScript(2)人工智能(2)Kubernetes(2)RocketMQ(2)系统运维(1)Linux(1)云原生CNCF(1)

语言

全部中文(简体)(10)

格式

全部PDF文档 PDF(9)PPT文档 PPT(1)
 
本次搜索耗时 0.037 秒,为您找到相关结果约 10 个.
  • 全部
  • 云计算&大数据
  • 前端开发
  • 综合其他
  • JavaScript
  • 人工智能
  • Kubernetes
  • RocketMQ
  • 系统运维
  • Linux
  • 云原生CNCF
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    本质:以多agent实现从数据采集到可视全流程 模型特点 Claude 3.5 sonnet  平衡性能:在模型大小和 性能之间取得平衡,适合 中等规模任务。  多模态支持:支持文本和 图像处理,扩展应用场景。  可解释性:注重模型输出 的可解释性和透明性。 DeepSeek R1  高效推理:专注于低延迟和 高吞吐量,适合实时应用。  轻量化设计:模型结构优化, 资源占用少,适合边缘设备 提供高精度结果。  长文本处理:擅长处理长文本 和复杂文档,适合专业场景。  定制化能力:支持用户自定义 训练和微调,适应特定需求。 Open AI o3 mini  小型化设计:轻量级模型, 适合资源有限的环境。  快速响应:优化推理速度, 适合实时交互场景。  通用性强:适用于多种自 然语言处理任务,如对话 生成和文本理解。 爬虫数据采集 1、阅读网页源代码,提取特定网页内容; 5支持联网查询网址,Claude 3.5 sonnet暂不支持;  四个模型均能根据上传的网页代码,对多个网址链接进行筛选、去重,完全提取出符合指令要求的所有网址链接并形成列表;  在复杂爬虫任务上,DeepSeek R1与Open AI o3min生成的代码均能正常执行数据采集任务,o3响应速度更快,R1数据采集结果更加完 整准确;其他2个模型都存在多次调试但代码仍然运行不成功的问题,如代码中罗列URL不全、输出文本中提取数据为空等。
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    DeepSeek是什么? AI + 国产 + 免费 + 开源 + 强大 • DeepSeek是一家专注通用人工智能(AGI)的中国科技公司,主攻大模型研发与应 用。 • DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。 Deepseek可以做什么? 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场景, 因果分析(事件关联性) 语义分析 语义解析 情感分析(评论、反馈) 意图识别(客服对话、用户查询) 实体提取(人名、地点、事件) 文本分类 文本分类 主题标签生成(如新闻分类) 垃圾内容检测 编程与代码相关 代码调试 • 错 误 分 析 与 修 复 建议 • 代 码 性 能 优 化 提 示 技术文档处理 • API文档生成 • 代码库解释与示 例生成 代码生成 • 根 据 当人人都会用AI时,你如何用得更好更出彩? 推理模型 • 例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务,非推理大模型一般侧重于语言生成、上下文理解和自然语言处理,而不强
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 RocketMQ v3.2.4 开发指南

    CORBA Notification 规范中,无此消费方式。 在 JMS 规范中,JMS point-to-point model 不乀类似,但是 RocketMQ 的集群消费功能大等亍 PTP 模型。 因为 RocketMQ 单个 Consumer Group 内的消费者类似亍 PTP,但是一个 Topic/Queue 可以被多个 Consumer Group 消费。  顺序消息 TOPIC_A TOPIC_B Producer Producer Consumer Consumer Consumer 图表 5-1 RocketMQ 是什么  是一个队列模型的消息中间件,具有高性能、高可靠、高实时、分布式特点。  Producer、Consumer、队列都可以分布式。  Producer 吐一些队列轮流収送消息,队列集合称为 Topic,Consumer (2). 读一条消息,会兇读 Consume Queue,再读 Commit Log,增加了开销。 (3). 要保证 Commit Log 不 Consume Queue 完全的一致,增加了编程的复杂度。 以上缺点如何克服: (1). 随机读,尽可能让读命中 PAGECACHE,减少 IO 读操作,所以内存越大越好。如果系统中堆积的消息过多, 读数据要访问磁盘会丌会由亍随机读导致系统性能急剧下降,答案是否定的。
    0 码力 | 52 页 | 1.61 MB | 1 年前
    3
  • pdf文档 Ubuntu 桌面培训 2010

    强调 Ubuntu 和其他操作系统不同,默认桌面是绝对干净的。用户可以根据喜好自由 地在桌面上添加文件和程序图标。 GNOME 是 Ubuntu 的默认桌面环境。 GNOME (GNU 网络对象模型环境,GNU Network Object Model Environment)是一个国际性的项目,为开发完整的,由自 由软件组成的桌面环境而努力。桌面环境,即图形用户界面,是计算机系统中最外层 的软件。GNOME 安装软件包后,您可按其分类,使用特定的菜单项打开它。 VI.VII 使用新立得软件包管理器 使用 Ubuntu 软件中心无法让您安装和删除某些更高级的软件包,比如 Apache 网络 服务、PHP 编程语言或 Scribus。这时,就得用新立得软件包管理器。 您可以使用新立得来安装、删除、配置或升级软件包,浏览、排序和搜索可用软件包 列表,管理仓库或升级整个系统。您可以在执行更改前将一系列动作加入操作队列。 建模、动画制作和后 期效果制作,也可以作为一款图形编辑器,在无需编程的环境下定义互动行 为。Blender 有一个独特的用户界面,它完全在 OpenGL 下实现且优化了运行速 度。Blender 中可以使用 Python 脚本绑定,并针对常用的文件格式实现了导 入/导出功能,例如 3D Studio。Blender 还可以生成图像、动画和模型,供给游 戏或其他第三方引擎使用,它以独立的二进制文件或网页插件的形式提供互动内
    0 码力 | 540 页 | 26.26 MB | 1 年前
    3
  • pdf文档 JavaScript 正则表达式迷你书 老姚 - v1.1

    本章小结 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 7. 第七章 正则表达式编程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 7.1. 正则表达式的四种操作 . . . . . • 第二章 正则表达式位置匹配攻略 • 第三章 正则表达式括号的作用 • 第四章 正则表达式回溯法原理 • 第五章 正则表达式的拆分 • 第六章 正则表达式的构建 • 第七章 正则表达式编程 下面简单地说说每一章都讨论了什么? 正则是匹配模式,要么匹配字符,要么匹配位置。 第一章和第二章以这个角度去讲解了正则表达式的基础。 在正则可以使用括号捕获数据,要么在 API 中进行分组引用,要么在正则里进行反向引用。 ”的概念。 如何能正确地把一大串正则拆分成一块一块的,成为了破解“天书”的关键。 本章就解决这一问题,内容包括: • 结构和操作符 • 注意要点 • 案例分析 5.1. 结构和操作符 编程语言一般都有操作符。只要有操作符,就会出现一个问题。当一大堆操作在一起时,先操作谁,又后操 作谁呢?为了不产生歧义,就需要语言本身定义好操作顺序,即所谓的优先级。 而在正则表达式中,操作符都体现
    0 码力 | 89 页 | 3.42 MB | 11 月前
    3
  • pdf文档 JavaScript 正则表达式迷你书 老姚 - v1.0

    本章小结 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 7. 第七章 正则表达式编程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 7.1. 正则表达式的四种操作 . . . . . • 第二章 正则表达式位置匹配攻略 • 第三章 正则表达式括号的作用 • 第四章 正则表达式回溯法原理 • 第五章 正则表达式的拆分 • 第六章 正则表达式的构建 • 第七章 正则表达式编程 下面简单地说说每一章都讨论了什么? 正则是匹配模式,要么匹配字符,要么匹配位置。 第一章和第二章以这个角度去讲解了正则表达式的基础。 在正则可以使用括号捕获数据,要么在 API 中进行分组引用,要么在正则里进行反向引用。 ”的概念。 如何能正确地把一大串正则拆分成一块一块的,成为了破解“天书”的关键。 本章就解决这一问题,内容包括: • 结构和操作符 • 注意要点 • 案例分析 5.1. 结构和操作符 编程语言一般都有操作符。只要有操作符,就会出现一个问题。当一大堆操作在一起时,先操作谁,又后操 作谁呢?为了不产生歧义,就需要语言本身定义好操作顺序,即所谓的优先级。 而在正则表达式中,操作符都体现
    0 码力 | 89 页 | 3.42 MB | 11 月前
    3
  • ppt文档 GPU Resource Management On JDOS

    Management On JDOS 梁永清 liangyongqing1@jd.com 提供的服务 1. 用于实验的 GPU 容器 2.基于 Kubeflow 的机器学习训练服务 3.模型管理和模型 Serving 服务 Experiment Training Serving 均基于容器,不对业务方直接提供 GPU 物理机 GPU 实验 JDOS 常规的容器服务 ,使用 gpu 的 Serving 服务 提供统一便捷的 Serving 服务,只需用户指定模型,即可提供 grpc 和 rest 服务,同时使用 GPU 复用 +HPA 提高 GPU 利用率 创建 Serving 与训练集成 • 用户只需要简单选择机房和 镜像填写模型名即可完成 Serving 服务创建 自有模型 • 用户只需要填写模型地址即 可 GPU 监控 • 容器监控服务,自适 应 GPU 容器,可根据
    0 码力 | 11 页 | 13.40 MB | 1 年前
    3
  • pdf文档 基于 KUBERNETES 的 容器器 + AI 平台

    ⽣生产级镜像仓库解决⽅方案,基于 • ⼀一键⾼高可⽤用部署和维护 • 为多租户和复杂权限集成⽽而增强 『token service』 • 管理理基于规则的镜像仓库 • 其他企业需要的优化功能 企业典型的多租户模型 租户 Tenant User User group Namespace Deployment Registry 
 project CI/CD workspace Pod … TensorFlow 任务运⾏行行状态 • ⽀支持分布式 TensorFlow 任务 KUBEFLOW 之上 • 借⼒力力容器器平台提供⽣生产级的集群资源管理理 • ⼯工作区隔离与共享 • 数据、模型、环境、应⽤用等 • 全⾯面⽀支持 AI ⼯工作流 • 探索开发 • 线上运⾏行行 关注并回复 kubecon18 P7 展台
    0 码力 | 19 页 | 3.55 MB | 1 年前
    3
  • pdf文档 Apache Pulsar,云原生时代的消息平台 - 翟佳

    streamnative.io 基础决定上层 streamnative.io 企业级特性 streamnative.io 统⼀消费模型 • Exclusive • Failover • Shared • Key-Shared streamnative.io 统⼀消费模型 — 订阅 Producer Topic 1 2 3 4 5 6 7 Subscription2 Consumer 1 2 3
    0 码力 | 39 页 | 12.71 MB | 6 月前
    0.03
  • pdf文档 消息中间件RocketMQ原理解析 - 斩秋

    组成一个逻辑上连续的队 列 d) 加载事物模块 e) 加载存储检查点 加载${user.home} \store\checkpoint 这个文件存储了 3 个 long 类型的值来记录存储 模型最终一致的时间点,这个 3 个 long 的值为 physicMsgTimestamp 为 commitLog 最后刷盘的时间 logicMsgTimestamp 为 consumeQueue 最终刷盘的时间
    0 码力 | 57 页 | 2.39 MB | 1 年前
    3
共 10 条
  • 1
前往
页
相关搜索词
清华大学DeepSeekDeepResearch科研清华华大大学入门精通RocketMQ开发指南Ubuntu桌面培训JavaScript正则表达达式表达式正则表达式迷你1.1GPUJDOSKUBERNETESApachePulsar消息中间中间件消息中间件原理解析
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩